scholarly journals Small Signal Stability Analysis of Power System with Increased Penetration of PV Generation

10.29007/zktd ◽  
2018 ◽  
Author(s):  
David Parmar ◽  
Dr. Bhinal Mehta

With the increase in the penetration of photo-voltaic (PV) generation in the power system it is utmost important to analyze the impact and issues of PV generation on the interconnected power system. As the output of PV is not constant its influence on the power system stability needs to be considered and it is evident from the grid codes of most of the countries. In this paper two different model of solar photovoltaic generation suitable for small signal stability analysis are presented and its behavior is investigated considering the IEEE 14-bus test system. The research review the impact of solar power on the interconnected power system with a high penetration of PV generation by the control of active and reactive power output. Based on constant reactive power and constant voltage magnitude models, the effect of voltage and angle stability of grid connected PV systems are studied and discussed. The eigenvalue analysis is carried out for the test system without any PV penetration and with different PV penetration levels and the results are compared using the power system analysis toolbox on MATLAB platform. The most influencing critical modes are identified and their behavior with increase in PV penetration is demonstrated.

Author(s):  
Shalom Lim Zhu Aun ◽  
Marayati Bte Marsadek ◽  
Agileswari K. Ramasamy

This paper primarily focuses on the small signal stability analysis of a power system integrated with solar photovoltaics (PV). The test system used in this study is the IEEE 39-bus. The small signal stability of the test system are investigated in terms of eigenvalue analysis, damped frequency, damping ratio and participation factor. In this study, various conditions are analyzed which include the increase in solar PV penetration into the system and load variation. The results obtained indicate that there is no significant impact of solar PV penetration on the small signal stability of large scaled power system.


This paper focuses on methodologies for calculation and examination of oscillatory security of interconnected power system network against constant disturbances. For instance, voltage soundness, transient dependability and oscillatory behaviors are also the measure of power system stability, which must be evaluated. For that proposed strategies based on proportional integral and fuzzy logic controlling techniques are implemented. The integral controller-based technique provides the zero steady-state error and with adequate damping, time to reach steady state can be reduced, on the cost of oscillation in frequency and tie-line power. On the contrary, fuzzy logic has demonstrated that strategies of computational intelligence can alleviate the quick appraisal of oscillatory solidness with less time to reach steady state. Furthermore, Eigenvalues are constructed for small signal stability analysis, utilizing a parallel variation of Arnoldi technique, reducing the time essential for calculation of vast Multi-Area power frameworks. For exhibit purposes, models have been composed utilizing MATLAB/SIMULINK and with the assistance of the fuzzy logic.


2013 ◽  
Vol 479-480 ◽  
pp. 530-534
Author(s):  
Van Dien Doan ◽  
Ta Hsiu Tseng ◽  
Pei Hwa Huang

The main objective of this paper is to report the small signal stability analysis of Vietnam Power System which has a longitudinal network structure with the consideration of power system stabilizer (PSS) in operation to enhance the damping of inter-area oscillation by using local as well as remote feedback signals via phasor measurement unit (PMU). Both methods of frequency domain and time domain analyses are used to investigate the performance of the power system. The study results show that by proper selection of PSS installation locations and remote feedback signals, power oscillations on the tie-line will be reduced and the system stability is thus improved.


Author(s):  
Ohnmar Swe

This paper presents the small signal stability of multi-machine power system over the 58-Bus, 26-Machine, Yangon Distribution Network and is validated with MATLAB software under various disturbance conditions. Time-domain solution analysis is employed to determine the small signal dynamic behavior of test system. Transtability model is used to perform time-domain simulation in SIMULINK. The simulation is carried out for normal condition, reference voltage of regulator (Vref) disturbance, mechanical torque (Tm)disturbance and network (fault) disturbance and the conditions of change in center of inertia for rotor angle (delta COI),  slip for center of inertia (slip COI), field current and mechanical torque are observed. According to the simulation results, perturbation of Vref shows only instability on the system. But ramping of Tm and network disturbance can cause large disturbance on the system and unstable conditions can be observed.


Sign in / Sign up

Export Citation Format

Share Document