JAREE (Journal on Advanced Research in Electrical Engineering)
Latest Publications


TOTAL DOCUMENTS

82
(FIVE YEARS 57)

H-INDEX

1
(FIVE YEARS 0)

Published By Lembaga Penelitian Dan Pengabdian Kepada Masyarakat ITS

2579-6216, 2580-0361

Author(s):  
Mohammad Fajar Setyawan ◽  
Mohammad Zaenal Efendi ◽  
Farid Dwi Murdianto

In a battery set, there is always a voltage difference caused by charging and discharging. Therefore, it is necessary to pay attention to the condition of the battery or State of Charge (SOC) so that it is in a balanced state between the batteries. Unbalanced battery conditions result in decreased performance of the battery. For that we need a balancing circuit that works actively with the help of a DC-DC converter. DC-DC converters generally have a principle like a buck-boost converter to increase and decrease the output voltage, however the output still has a fairly large ripple in the waveform. Therefore, the CUK converter is used which is a development of the buck-boost converter topology, where the output of this CUK converter has smaller ripples because it uses two capacitors and two inductors. Of the various methods used to adjust the duty cycle of the CUK converter, a precise and accurate algorithm is needed to overcome the instability of the converter output. The method used to adjust the duty cycle uses the Adaptive Neuro-Fuzzy Inference System (ANFIS) algorithm as the development of the Fuzzy method. The system is implemented using MATLAB Simulink software. The simulation results show that the output of the CUK converter with the ANFIS method has a faster response speed reaching a set point of 1.95 × 10-4 seconds and the accuracy of the output voltage with ANFIS is 99.94% while the accuracy of the output converter current using ANFIS is 65.7%.Keywords: ANFIS, balancing, battery, CUK converter, state of charge (SOC).15


Author(s):  
Heri Suryoatmojo ◽  
Indra Anugrah Pratama ◽  
Soedibyo .

In order to develop renewable energy, it also needs to enhance the developing of supporting elements. For example, lithium-ion batteries as a component of energy storage. Lithium-ion batteries (Li-ion) have been chosen as energy storage devices for portable equipment, unmanned Aerial Vehicle (UAV) and grid storage systems. But there is a problem such as the process of charging the battery for UAV. Conventional converters used in those chargers have disadvantages such as limited power, lower voltage gain and also high current stress. Therefore, such converters are not efficient to be used for charging the battery. This paper proposes a cascaded bidirectional buck-boost converter for charging the battery. This converter can be operated bidirectional and have better rated power and higher voltage gain. Also, this topology has the same polarity with the input. From the test results, the converter can work in either forward or backward power flow. This converter is working in both buck or boost mode and has an efficiency of 83% in buck mode and 81% for boost mode. The charging process is about 83 minutes until SOC approximately 90 – 95.Keywords: battery charger, cascaded bidirectional buck – boost converter, constant current, li-ion introduction.


Author(s):  
Faizal Ramadhan Putra ◽  
Eka Iskandar ◽  
Rusdhianto Abdul Kadir ◽  
Ari Santoso ◽  
Yusuf Bilfaqih ◽  
...  

In this journal, we will discuss the construction design of an outer rotor induction motor that can be applied to an electric car that is installed inside the car's wheels. In designing a motor, it is necessary to pay attention to the motor parameters, both mechanical parameters, and electrical parameters. These parameters will be calculated using software and designed in such a way as to get the parameters that are as effective and efficient as possible for the use of electric cars. After obtaining the best design, a comparison of the simulation results with mathematical modeling will be seen. In this final project, we can get a design with an initial torque of 64 Nm for a speed limit of 25 km/hour. Keywords: construction, induction, in-wheel, motor, outer rotor.


Author(s):  
Ahmad Zidan Falih ◽  
Mohammad Zaenal Efendi ◽  
Farid Dwi Murdianto

Energy dependency is increasing along with the increase in population growth rate, while the fossil energy is decreasing. Alternative energy such as solar energy is one solution to provide renewable energy, but solar energy cannot provide an intense supply of energy. Therefore, the equipment needs an energy storage. The battery has important role in energy storage with the performance of the battery that need an attention. The method and type of battery used  must be considered to maintain battery lifetime and  reduce overcharging. The purpose of this research is to understand the process of fast charging the CC-CV (Constant Current Constant Voltage) method on Lithium-Ion battery which is expected to reduce battery overcharging. In this method, the current is maintained constant until certain conditions then followed by constant voltage to prevent overcharging. The voltage from the solar panel is very high, voltage reduction is needed as the charging voltage for the battery. The DC-DC Converter used is Buck Converter which is given Fuzzy Type-2 algorithm to maintain a current of 10 Ampere during CC conditions and  a voltage of 14.4 Volt during CV conditions with switch of CC conditions to CV conditions on SoC 99.25%.Keywords: battery charging, buck converter, CC-CV, lithium-ion, type-2 fuzzy.


Author(s):  
Viona Hazar Briliana ◽  
Totok Mujiono

Recently, usage of fabrics as wearable device, along with their applications are increasing, one example being the detection of bio-analyzes such as blood or sweat. One method used to observe the properties of the material of a fabric is to use the Refcletance Spectroscopy, in which excitation of monochromatic light with a specific wavelength is given to a fabrics. Intensity value is then processed using the PCA method in order to obtain the pattern of the difference between each substrate. The proposed transducer optic system consists of 405nm blueviolet laser as the light source, biconvex lens, Adafruit AS7262 light detector, and Arduino. This system can only detect the difference in substrate content from the occurring light scatter. This system can be applied to various kinds of fabric wearable material with differing scatter intensity values depending on the kind of fabrics. Softer kind of fabric is proposed as material for the wearable device because it gives a high scatter intensity value and constant values in every repetation which results in better data reading.Keywords: clustering, optical, reflectance, spectroscopy, transducer, wearable.


Author(s):  
Maskhur Zulkarnain ◽  
Trihastuti Agustinah

This research examined the development of the combination of virtual structure and leader-follower as an obstacle avoidance method in the formation control of a mobile robot. The formation of the robots are designed with the Separation Bearing Control (SBC) approach between the leader robot (RL) and the virtual robot (RV). The virtual robot is used as a virtual follower and a reference trajectory for the follower  robot (RF). When the follower robot detects an obstacle, the follower robot trajectory is adjusted using a trajectory planner for obstacle avoidance. After passing the obstacle, the follower robot will track its position back in formation using virtual robot position and heading as reference. Leader robot and follower are perturbed by disturbances. In order to ensure the achievement of small error tracking, a controller is designed using the integration of kinematic and dynamics controllers with disturbance observer. The kinematic and dynamics controllers are designed using input-output linearisation (IOL) method and computed torque control (CTC). The effectiveness of the proposed method is verified by the simulation result.Keywords: CTC, leader follower, obstacle avoidance, SBC, virtual structure. 


Author(s):  
Rusdhianto Effendi Abdul Kadir ◽  
Mochammad Sahal ◽  
Yusuf Bilfaqih ◽  
Zulkifli Hidayat ◽  
Gaung Jagad

Unmanned Surface Vehicles (USV) are self-driving vehicles that operate on the water surface. In order to be operated autonomously, USV has a guidance system designed for path planning to reach its destination. The ability to detect obstacles in its paths is one of the important factors to plan a new path in order to avoid obstacles and reach its destination optimally. This research designed an obstacle tracking system which integrates USV perception sensors such as camera and Light Detection and Ranging (LiDaR) to gain information of the obstacle’s relative position in the surrounding environment to the ship. To improve the relative position estimation of the obstacles to the ship, Kalman filter is applied to reduce the measurements noises. The results of the system design are simulated using MATLAB software so that results can be analyzed to see the performance of the system design. Results obtained using the Kalman filter show 12% noise reduction. Keywords: filter kalman, obstacle tracking, unmanned surface vehicle.


Author(s):  
Achmad Mauludiyanto ◽  
Gamantyo Hendrantoro ◽  
Muhammad Fachry Nova

The Wireless Body Area Network (WBAN) refers to a communication network between sensors placed on the inside, on the surface, or around the body wirelessly. WBAN system cannot be separated from body tissues. Body tissues also have electrical properties depending on frequency. Therefore, body tissue can affect the phenomena occurring in radio wave propagation in the WBAN channel. One of the phenomena is attenuation. This study investigates the impacts of body tissue on the WBAN channel and the effects of frequency on the attenuation of body tissue in the WBAN channel. The measurement of magnitude response was carried out with the human body as the measurement object by utilizing the S21 parameter measurement with a vector network analyzer. In NLOS conditions, a human body was located between two coplanar Vivaldi antenna. Measurements were conducted on the head, chest, and abdomen. The frequency used was in the range of 2 GHz to 6 GHz. The body tissue attenuation was obtained by finding the difference between the magnitude measurement response on the LOS and NLOS conditions. The attenuation data were analyzed using statistical and numerical analysis to determine the effect of frequency on the attenuation of the human body tissues. Based on the analysis results, it was identified that the frequency affected the human body tissue attenuation. The enhancement attenuation of the human body tissues occurred when the frequency was higher. Moreover, there was a significant difference in the body tissue attenuation in different parts of the body.Keywords: attenuation, body tissues, s-parameters, wireless body area network.


Author(s):  
Zaimah Permatasari ◽  
Mauridhi Hery Purnomo ◽  
I Ketut Eddy Purnama

Lung cancer is the most common cause of cancer death globally. Early detection of lung cancer will greatly beneficial to save the patient. This study focused on the detection of lung cancer using classification with the Support Vector Machine (SVM) method based on the features of Gray Level Co-occurrence Matrices (GLCM) and Run Length Matrix (RLM). The lung data used were obtained from the Cancer imaging archive Database, consisting of 500 CT images. CT images were grouped into 2 clusters, including normal and lung cancer. The research steps include: image processing, region of interest segmentation, and feature extraction. The results indicate that the system can detect the CT-image of SVM classification where the default parameter only provides an accuracy of 85.63%. It is expected that the results will be useful to help medical personnel and researchers to detect the status of lung cancer. These results provide information that detection of lung nodules based on GLCM and RLM features that can be detected is better. Furthermore, selecting parameters C and γ on SVM. Keywords: cancer, nodule, support vector machine (SVM).


Author(s):  
Pablo Petrashin ◽  
Walter Lancioni ◽  
Agustín Laprovitta ◽  
Juan Castagnola

Oscillation based testing (OBT) has proven to be a simple and effective test strategy for numerous kind of circuits. In this work, OBT is applied to a radiation sensor to be used as a VLSI cell in embedded applications, implementing an oscillation built-in self-test (OBIST) structure. The oscillation condition is achieved by means of a minimally intrusive switched feedback loop and the response evaluation circuit can be included in a very simple way, minimizing the hardware overhead. The fault simulation indicates a fault coverage of 100% for the circuit under test.Keywords: fault simulation, mixed signal testing, OBIST, oscillation-based test, VLSI testing.


Sign in / Sign up

Export Citation Format

Share Document