scholarly journals More on Perfect Roman Domination in Graphs

2020 ◽  
Vol 13 (3) ◽  
pp. 529-548
Author(s):  
Leonard Mijares Paleta ◽  
Ferdinand Paler Jamil

A perfect Roman dominating function on a graph G = (V (G), E(G)) is a function f : V (G) → {0, 1, 2} for which each u ∈ V (G) with f(u) = 0 is adjacent to exactly one vertex v ∈ V (G) with f(v) = 2. The weight of a perfect Roman dominating function f is the value ωG(f) = Pv∈V (G) f(v). The perfect Roman domination number of G is the minimum weight of a perfect Roman dominating function on G. In this paper, we study the perfect Roman domination numbers of graphs under some binary operation

Author(s):  
P. Roushini Leely Pushpam ◽  
B. Mahavir ◽  
M. Kamalam

Let [Formula: see text] be a graph and [Formula: see text] be a Roman dominating function defined on [Formula: see text]. Let [Formula: see text] be some ordering of the vertices of [Formula: see text]. For any [Formula: see text], [Formula: see text] is defined by [Formula: see text]. If for all [Formula: see text], [Formula: see text], we have [Formula: see text], that is [Formula: see text], for some [Formula: see text], then [Formula: see text] is called a resolving Roman dominating function (RDF) on [Formula: see text]. The weight of a resolving RDF [Formula: see text] on [Formula: see text] is [Formula: see text]. The minimum weight of a resolving RDF on [Formula: see text] is called the resolving Roman domination number of [Formula: see text] and is denoted by [Formula: see text]. A resolving RDF on [Formula: see text] with weight [Formula: see text] is called a [Formula: see text]-function on [Formula: see text]. In this paper, we find the resolving Roman domination number of certain well-known classes of graphs. We also categorize the class of graphs whose resolving Roman domination number equals their order.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050020
Author(s):  
S. Nazari-Moghaddam ◽  
L. Volkmann

A double Roman dominating function (DRDF) on a graph [Formula: see text] is a function [Formula: see text] such that (i) every vertex [Formula: see text] with [Formula: see text] is adjacent to at least two vertices assigned a [Formula: see text] or to at least one vertex assigned a [Formula: see text] and (ii) every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text] The weight of a DRDF is the sum of its function values over all vertices. The double Roman domination number [Formula: see text] equals the minimum weight of a DRDF on [Formula: see text] The concept of criticality with respect to various operations on graphs has been studied for several domination parameters. In this paper, we study the concept of criticality for double Roman domination in graphs. In addition, we characterize double Roman domination edge super critical graphs and we will give several characterizations for double Roman domination vertex (edge) critical graphs.


2018 ◽  
Vol 11 (03) ◽  
pp. 1850034 ◽  
Author(s):  
J. Amjadi ◽  
M. Soroudi

Let [Formula: see text] be a finite simple digraph with vertex set [Formula: see text] and arc set [Formula: see text]. A twin signed total Roman dominating function (TSTRDF) on the digraph [Formula: see text] is a function [Formula: see text] satisfying the conditions that (i) [Formula: see text] and [Formula: see text] for each [Formula: see text], where [Formula: see text] (respectively [Formula: see text]) consists of all in-neighbors (respectively out-neighbors) of [Formula: see text], and (ii) every vertex [Formula: see text] for which [Formula: see text] has an in-neighbor [Formula: see text] and an out-neighbor [Formula: see text] with [Formula: see text]. The weight of an TSTRDF [Formula: see text] is [Formula: see text]. The twin signed total Roman domination number [Formula: see text] of [Formula: see text] is the minimum weight of an TSTRDF on [Formula: see text]. In this paper, we initiate the study of twin signed total Roman domination in digraphs and we present some sharp bounds on [Formula: see text]. In addition, we determine the twin signed Roman domination number of some classes of digraphs.


Author(s):  
Hossein Abdollahzadeh Ahangar ◽  
Jafar Amjadi ◽  
Mustapha Chellali ◽  
S. Kosari ◽  
Vladimir Samodivkin ◽  
...  

Let $G=(V,E)$ be a simple graph with vertex set $V$ and edge set $E$. A mixed Roman dominating function (MRDF) of $G$ is a function $f:V\cup E\rightarrow \{0,1,2\}$ satisfying the condition that every element $x\in V\cup E$ for which $f(x)=0$ is adjacent or incident to at least one element $% y\in V\cup E$ for which $f(y)=2$. The weight of a mixed Roman dominating function $f$ is $\omega (f)=\sum_{x\in V\cup E}f(x)$. The mixed Roman domination number $\gamma _{R}^{\ast }(G)$ of $G$ is the minimum weight of a mixed Roman dominating function of $G$. We first show that the problem of computing $\gamma _{R}^{\ast }(G)$ is NP-complete for bipartite graphs and then we present upper and lower bounds on the mixed Roman domination number, some of them are for the class of trees.


2016 ◽  
Vol 10 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Mustapha Chellali ◽  
Teresa Haynes ◽  
Stephen Hedetniemi

A Roman dominating function (RDF) on a graph G is a function f : V (G) ? {0,1,2} satisfying the condition that every vertex u with f(u) = 0 is adjacent to at least one vertex v of G for which f(v) = 2. The weight of a Roman dominating function is the sum f(V) = ?v?V f(v), and the minimum weight of a Roman dominating function f is the Roman domination number ?R(G). An RDF f is called an independent Roman dominating function (IRDF) if the set of vertices assigned positive values under f is independent. The independent Roman domination number iR(G) is the minimum weight of an IRDF on G. We show that for every nontrivial connected graph G with maximum degree ?, ?R(G)? ?+1/??(G) and iR(G) ? i(G) + ?(G)/?, where ?(G) and i(G) are, respectively, the domination and independent domination numbers of G. Moreover, we characterize the connected graphs attaining each lower bound. We give an additional lower bound for ?R(G) and compare our two new bounds on ?R(G) with some known lower bounds.


Author(s):  
Huiqin Jiang ◽  
Pu Wu ◽  
Zehui Shao ◽  
Jia-Bao Liu

A double Roman dominating function on a graph G is a function f : V(G) → {0, 1, 2, 3} 2 with the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for 3 which f(v) = 3 or two vertices v1 and v2 for which f(v1) = f(v2) = 2, and every vertex u for which 4 f(u) = 1 is adjacent to at least one vertex v for which f(v) ≥ 2. The weight of a double Roman dominating function f is the value w(f) = ∑u∈V(G) 5 f(u). The minimum weight over all double 6 Roman dominating functions on a graph G is called the double Roman domination number γdR(G) 7 of G. In this paper we determine the exact value of the double Roman domination number of the 8 generalized Petersen graphs P(n, 2) by using a discharging approach.


2016 ◽  
Vol 47 (3) ◽  
pp. 357-371 ◽  
Author(s):  
Seyed Mahmoud Sheikholeslami ◽  
Asghar Bodaghli ◽  
Lutz Volkmann

Let $D$ be a finite simple digraph with vertex set $V(D)$ and arc set $A(D)$. A twin signed Roman dominating function (TSRDF) on the digraph $D$ is a function $f:V(D)\rightarrow\{-1,1,2\}$ satisfying the conditions that (i) $\sum_{x\in N^-[v]}f(x)\ge 1$ and $\sum_{x\in N^+[v]}f(x)\ge 1$ for each $v\in V(D)$, where $N^-[v]$ (resp. $N^+[v]$) consists of $v$ and all in-neighbors (resp. out-neighbors) of $v$, and (ii) every vertex $u$ for which $f(u)=-1$ has an in-neighbor $v$ and an out-neighbor $w$ for which $f(v)=f(w)=2$. The weight of an TSRDF $f$ is $\omega(f)=\sum_{v\in V(D)}f(v)$. The twin signed Roman domination number $\gamma_{sR}^*(D)$ of $D$ is the minimum weight of an TSRDF on $D$. In this paper, we initiate the study of twin signed Roman domination in digraphs and we present some sharp bounds on $\gamma_{sR}^*(D)$. In addition, we determine the twin signed Roman domination number of some classes of digraphs.


Author(s):  
Davood Bakhshesh

Let [Formula: see text] be a graph with the vertex set [Formula: see text]. A function [Formula: see text] is called a Roman dominating function of [Formula: see text], if every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text]. The weight of a Roman dominating function [Formula: see text] is equal to [Formula: see text]. The minimum weight of a Roman dominating function of [Formula: see text] is called the Roman domination number of [Formula: see text], denoted by [Formula: see text]. In this paper, we initiate the study of a variant of Roman dominating functions. A function [Formula: see text] is called an isolate Roman dominating function of [Formula: see text], if [Formula: see text] is a Roman dominating function and there is a vertex [Formula: see text] with [Formula: see text] which is not adjacent to any vertex [Formula: see text] with [Formula: see text]. The minimum weight of an isolate Roman dominating function of [Formula: see text] is called the isolate Roman domination number of [Formula: see text], denoted by [Formula: see text]. We present some upper bound on the isolate Roman domination number of a graph [Formula: see text] in terms of its Roman domination number and its domination number. Moreover, we present some classes of graphs [Formula: see text] with [Formula: see text]. Finally, we show that the decision problem associated with the isolate Roman dominating functions is NP-complete for bipartite graphs and chordal graphs.


Author(s):  
Pallavi Sangolli ◽  
Manjula C. Gudgeri ◽  
. Varsha ◽  
Shailaja S. Shirkol

The concept of Domination in graphs has application to the study of DNA structures. For investigating the chemical and physical properties, several topological indices used are Wiener index, Randic index, Zagreb index, Kier & Hall index that depends on vertex degree and distance sum, and have been used extensively for QSAR and QSPR studies. A Roman Dominating Function of G is function f: V→ {0, 1, 2} such that every vertex v for which f (v) = 0 has a neighbor u with f(u) = 2. The weight of a Roman dominating function f is w (f) =   . The Roman domination number of a graph G is denoted by (G) and is the minimum weight of all possible Roman dominating functions. In this paper, we find Roman domination number of some chemicals graphs such as saturated hydrocarbons and unsaturated hydrocarbons, hexagonal chain, pyrene, Hexabenzocoronene, H-Phenylenic nanotube and N-Napthelenic nanotube.


2016 ◽  
Vol 13 (10) ◽  
pp. 7362-7365
Author(s):  
Yong Li ◽  
Qiong Li ◽  
Jian He ◽  
Xinruan Fan ◽  
Zhaoheng Ding

Let G be a graph with vertex set V(G). A function f: V(G) → {0, 1, 2} with the ordered partition (V0, V1, V2) of V(G), where Vi = {V∈V(G) | f(V) = i} for i = 0, 1, 2, is a Roman dominating function if x ∈ V0 implies |N(x)∩V2|≥ 1. It is a unique response Roman function if x ∈ V0 implies |N(x) ≥ V2|≤ 1 and x ∈ V1 ∪ V2 implies that |N(x) ∩ V2| = 0. A function f: V(G) → {0, 1, 2} is a unique response Roman dominating function if it is both a unique response Roman function and a Roman dominating function. The unique response Roman domination number, denoted by uR(G), of G is the minimum weight of a unique response Roman dominating function. In this paper we study the unique response Roman domination of graphs, and provide some graphs whose unique response Roman domination number equals to the independent Roman domination number.


Sign in / Sign up

Export Citation Format

Share Document