Trees ◽  
2021 ◽  
Author(s):  
Hans Pretzsch

Abstract Key message Prediction of tree growth based on size or mass as proposed by the Metabolic Scaling Theory is an over-simplification and can be significantly improved by consideration of stem and crown morphology. Tree growth and metabolic scaling theory, as well as corresponding growth equations, use tree volume or mass as predictors for growth. However, this may be an over-simplification, as the future growth of a tree may, in addition to volume or mass, also depend on its past development and aspects of the current inner structure and outer morphology. The objective of this evaluation was to analyse the effect of selected structural and morphological tree characteristics on the growth of common tree species in Europe. Here, we used eight long-term experiments with a total of 24 plots and extensive individual measurements of 1596 trees in monospecific stands of European beech (Fagus sylvatica L.), Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and sessile oak (Quercus petraea (Matt.) Liebl.). Some of the experiments have been systematically surveyed since 1870. The selected plots represent a broad range of stand density, from fully to thinly stocked stands. We applied linear mixed models with random effects for analysing and modelling how tree growth and productivity are affected by stem and crown structure. We used the species-overarching relationship $$\mathrm{iv}={{a}_{0}\times v}$$ iv = a 0 × v between stem volume growth, $$\mathrm{iv}$$ iv and stem volume, $$v,$$ v , as the baseline model. In this model $${a}_{0}$$ a 0 represents the allometric factor and α the allometric exponent. Then we included tree age, mean stem volume of the stand and structural and morphological tree variables in the model. This significantly reduced the AIC; RMSE was reduced by up to 43%. Interestingly, the full model estimating $$\mathrm{iv}$$ iv as a function of $$v$$ v and mean tree volume, crown projection area, crown ratio and mean tree ring width, revealed a $$\alpha \cong 3/4$$ α ≅ 3 / 4 scaling for the relationship between $$\mathrm{iv}\propto {v}^{\alpha }$$ iv ∝ v α . This scaling corresponded with Kleiber’s rule and the West-Brown-Enquist model of the metabolic scaling theory. Simplified approaches based on stem diameter or tree mass as predictors may be useful for a rough estimation of stem growth in uniform stands and in cases where more detailed predictors are not available. However, they neglect other stem and crown characteristics that can have a strong additional effect on the growth behaviour. This becomes of considerable importance in the heterogeneous mixed-species stands that in many countries of the world are designed for forest restoration. Heterogeneous stand structures increase the structural variability of the individual trees and thereby cause a stronger variation of growth compared with monocultures. Stem and crown characteristics, which may improve the analysis and projection of tree and stand dynamics in the future forest, are becoming more easily accessible by Terrestrial laser scanning.


2007 ◽  
Vol 13 (3) ◽  
pp. 591-609 ◽  
Author(s):  
BRIAN J. ENQUIST ◽  
ANDREW J. KERKHOFF ◽  
TRAVIS E. HUXMAN ◽  
EVAN P. ECONOMO

Synthese ◽  
1966 ◽  
Vol 16 (2) ◽  
pp. 170-233 ◽  
Author(s):  
William W. Rozeboom
Keyword(s):  

1972 ◽  
Vol 38 (2) ◽  
pp. 107-108 ◽  
Author(s):  
I.G Enting ◽  
J Oitmaa
Keyword(s):  

1995 ◽  
Vol 188 (1-2) ◽  
pp. 1-10 ◽  
Author(s):  
Rémi Jullien ◽  
Nathalie Olivi-Train ◽  
Anwar Hasmy ◽  
Thierry Woignier ◽  
Jean Phalippou ◽  
...  

1994 ◽  
Vol 08 (08n09) ◽  
pp. 469-478 ◽  
Author(s):  
C. W. J. Beenakker

Recent developments in the scaling theory of phase-coherent conduction through a disordered wire are reviewed. The Dorokhov–Mello–Pereyra–Kumar equation for the distribution of transmission eigenvalues has been solved exactly, in the absence of time-reversal symmetry. Comparison with the previous prediction of random-matrix theory shows that this prediction was highly accurate but not exact: the repulsion of the smallest eigenvalues was overestimated by a factor of two. This factor of two resolves several disturbing discrepancies between random-matrix theory and microscopic calculations, notably in the magnitude of the universal conductance fluctuations in the metallic regime, and in the width of the log-normal conductance distribution in the insulating regime.


2021 ◽  
Author(s):  
Diver E. Marín ◽  
Juan F. Salazar ◽  
José A. Posada-Marín

<p>Some of the main problems in hydrological sciences are related to how and why river flows change as a result of environmental change, and what are the corresponding implications for society. This has been described as the Panta Rhei context, which refers to the challenge of understanding and quantifying hydrological dynamics in a changing environment, i.e. under the influence of non-stationary effects. The river flow regime in a basin is the result of a complex aggregation process that has been studied by the scaling theory, which allows river basins to be classified as regulated or unregulated and to identify a critical threshold between these states. Regulation is defined here as the basin’s capacity to either dampen high flows or to enhance low flows. This capacity depends on how basins store and release water through time, which in turn depends on many processes that are highly dynamic and sensitive to environmental change. Here we focus on the Magdalena river basin in northwestern South America, which is the main basin for water and energy security in Colombia, and at the same time, it has been identified as one of the most vulnerable regions to be affected by climate change. Building upon some of our previous studies, here we use data analysis to study the evolution of regulation in the Magdalena basin for 1992-2015 based on the scaling theory for extreme flows. In contrast to most previous studies, here we focus on the scaling properties of events rather than on long term averages. We discuss possible relations between changes in the scaling properties and environmental factors such as climate variability, climate change, and land use/land cover change, as well as the potential implications for water security in the country. Our results show that, during the last few decades, the Magdalena river basin has maintained its capacity to regulate low flows (i.e. amplification) whereas it has been losing its capacity to regulate high flows (i.e. dampening), which could be associated with the occurrence of the extremes phases of  El Niño Southern Oscillation (ENSO) and anthropogenic effects, mainly deforestation. These results provide foundations for using the scaling laws as empirical tools for understanding temporal changes of hydrological regulation and simultaneously generate useful scientific evidence that allows stakeholders to take decisions related to water management in the Magdalena river basin in the context of environmental change.</p>


Sign in / Sign up

Export Citation Format

Share Document