high flows
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 72)

H-INDEX

29
(FIVE YEARS 6)

2022 ◽  
Vol 17 (2) ◽  
pp. 28
Author(s):  
Assem Ehamd

Labor migration has gained momentum and has become an intensive and difficult process to manage. The problem of emigration is evidenced by the particularly high flows of people leaving to work and live abroad (Akerman, 2007). As migration processes intensify, there are risks of an economic, socio-cultural and political-managerial nature. Population migration takes place in all countries of the world, but the extent of population migration and the impact on the country's economy and business vary. The work summarizes the theories and concepts of international labor migration, explains the causes of international labor migration and the positive and negative consequences for business. Two countries were selected to assess international labor migration impact on businesses activities. Lithuania was the first choice because its economic and political and institutional and technological was growing from time to time. Egypt was the second choice because it was suffereing after the two revolutions and its indicators had negatively affected except technological sector .The business environment of selected countries were examined. The business environment of selected countries was also examined, and the impact of international labor migration on the activities of companies was determined (Böcker, 2019).


2021 ◽  
Vol 25 (12) ◽  
pp. 6437-6463
Author(s):  
Joni Dehaspe ◽  
Fanny Sarrazin ◽  
Rohini Kumar ◽  
Jan H. Fleckenstein ◽  
Andreas Musolff

Abstract. Nitrate (NO3-) excess in rivers harms aquatic ecosystems and can induce detrimental algae growths in coastal areas. Riverine NO3- uptake is a crucial element of the catchment-scale nitrogen balance and can be measured at small spatiotemporal scales, while at the scale of entire river networks, uptake measurements are rarely available. Concurrent, low-frequency NO3- concentration and streamflow (Q) observations at a basin outlet, however, are commonly monitored and can be analyzed in terms of concentration discharge (C–Q) relationships. Previous studies suggest that steeper positive log (C)–log (Q) slopes under low flow conditions (than under high flows) are linked to biological NO3- uptake, creating a bent rather than linear log (C)–log (Q) relationship. Here we explore if network-scale NO3- uptake creates bent log (C)–log (Q) relationships and when in turn uptake can be quantified from observed low-frequency C–Q data. To this end we apply a parsimonious mass-balance-based river network uptake model in 13 mesoscale German catchments (21–1450 km2) and explore the linkages between log (C)–log (Q) bending and different model parameter combinations. The modeling results show that uptake and transport in the river network can create bent log (C)–log (Q) relationships at the basin outlet from log–log linear C–Q relationships describing the NO3- land-to-stream transfer. We find that within the chosen parameter range the bending is mainly shaped by geomorphological parameters that control the channel reactive surface area rather than by the biological uptake velocity itself. Further we show that in this exploratory modeling environment, bending is positively correlated to percentage of NO3- load removed in the network (Lr.perc) but that network-wide flow velocities should be taken into account when interpreting log (C)–log (Q) bending. Classification trees, finally, can successfully predict classes of low (∼4 %), intermediate (∼32 %) and high (∼68 %) Lr.perc using information on water velocity and log (C)–log (Q) bending. These results can help to identify stream networks that efficiently attenuate NO3- loads based on low-frequency NO3- and Q observations and generally show the importance of the channel geomorphology on the emerging log (C)–log (Q) bending at network scales.


2021 ◽  
Vol 9 ◽  
Author(s):  
Douglas P. Smith ◽  
Jamie Schnieders ◽  
Lauren Marshall ◽  
Katherine Melchor ◽  
Skylar Wolfe ◽  
...  

Spawning gravel scarcity is a limiting factor for successful recovery of federally-threatened anadromous fish like steelhead of central California. A BACI-experimental design using bed particle counts from 2013 through 2021 shows that spawning-sized gravel (32–90 mm) diminished downstream of the former San Clemente Dam site in 2017, following dam removal in 2015. High flows in 2017 transported a pulse of sand and fine-gravel that filled pools and runs throughout the river below the dam. The bed material in the 3 km closest to the dam remained too coarse for redds in riffles and too fine in pools and runs. Time-series bathymetric data of the Los Padres Dam reservoir located in the upper Carmel watershed shows that nearly all bed material (including spawning gravel) in the upper Carmel River watershed was recruited during wet winters that immediately followed expansive wildfires. We studied that effect in detail following the Carmel Fire of August 2020, which preconditioned the slopes adjacent to the Carmel River for debris flows. Our analysis of several fire-mediated debris flows in 2021 show that they contained virtually no mud and held approximately 45% spawning-sized gravel. Although the debris flows contained abundant spawning gravel, and several flow snouts terminated in the Carmel River, the material was dispersed downstream rather than forming bars and patches that could be used for steelhead nest building. The generally small volume of material in the flows relative to the size of the river channel and impediments to debris flow runout limited the contribution of spawning-size gravel to the river.


2021 ◽  
Author(s):  
Lienne R. Sethna ◽  
Todd V. Royer ◽  
Shannon L. Speir ◽  
Matt T. Trentman ◽  
Ursula H. Mahl ◽  
...  

Abstract Agriculture alters the biogeochemical cycling of nutrients such as nitrogen (N), phosphorus (P), and silicon (Si) which contributes to the stoichiometric imbalance among these nutrients in aquatic systems. Limitation of Si relative to N and P can facilitate the growth of non-siliceous, potentially harmful, algal taxa which has severe environmental and economic impacts. Planting winter cover crops can retain N and P on the landscape, yet their effect on Si concentrations and stoichiometry is unknown. We analyzed three years of biweekly concentrations and loads of dissolved N, P, and Si from subsurface tile drains and stream water in two agricultural watersheds in northern Indiana. Intra-annual patterns in Si concentrations and stoichiometry showed that cover crop vegetation growth did not reduce in-stream Si concentrations as expected, although, compared to fallow conditions, winter cover crops increased Si:N ratios to conditions more favorable for diatom growth. To assess the risk of non-siliceous algal growth, we calculated a stoichiometric index to quantify biomass growth facilitated by excess N and P relative to Si. Index values showed a divergence between predicted algal growth and what we observed in the streams, indicating other factors influence algal community composition. The stoichiometric imbalance was more pronounced at high flows, suggesting increased risk of harmful blooms as environmental change increases the frequency and intensity of precipitation in the midwestern U.S. Our data include some of the first measurements of Si within small agricultural watersheds and provide the groundwork for understanding the role of agriculture on Si export and stoichiometry.


Author(s):  
Lamboni Batablinlè ◽  
Lawin E. Agnidé ◽  
Kodja Domiho Japhet ◽  
Amoussou Ernest ◽  
Vissin Expédit

Abstract. The impact of climate change on precipitation and water availability is of major concern for policy makers in the Mono Basin of West Africa, whose economy mainly depends on rainfed agriculture and hydropower generation. The objective of this study is to project rainfall, flows and evapotranspiration (ET) in the future period and understand their changes across Mono River Basin. Observed data were considered for the historical period 1980–2010, and a Multi-model ensemble for future projections data of eight selected Regional Climate Models under RCP 4.5 and RCP 8.5 over the periods 2011–2100 was used. The GR4J model was used to simulate daily flows of the Mono watershed. The ensemble mean shows a decrease and increase streamflows between −54 % and 42 %, −58 % and 31 %​​​​​​​ under the RCP4.5, RCP8.5 scenario, respectively. The greatest decreases of high flows is projected to occur in the near term under RCP8.5, whereas the greatest decrease of low flows is projected to occur in the long term under the same RCP. For the rainfall and ET, the both scenarios (RCP4.5 and RCP8.5) predict an increase of ET while the rainfall will decrease. The results of this study of would be very useful in the choice of management and adaptation policies for water resources management.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohammed Basheer ◽  
Victor Nechifor ◽  
Alvaro Calzadilla ◽  
Khalid Siddig ◽  
Mikiyas Etichia ◽  
...  

AbstractThe landscape of water infrastructure in the Nile Basin is changing with the construction of the Grand Ethiopian Renaissance Dam. Although this dam could improve electricity supply in Ethiopia and its neighbors, there is a lack of consensus between Ethiopia, Sudan, and Egypt on the dam operation. We introduce a new modeling framework that simulates the Nile River System and Egypt’s macroeconomy, with dynamic feedbacks between the river system and the macroeconomy. Because the two systems “coevolve” throughout multi-year simulations, we term this a “coevolutionary” modeling framework. The framework is used to demonstrate that a coordinated operating strategy could allow the Grand Ethiopian Renaissance Dam to help meet water demands in Egypt during periods of water scarcity and increase hydropower generation and storage in Ethiopia during high flows. Here we show the hydrological and macroeconomic performance of this coordinated strategy compared to a strategy that resembles a recent draft proposal for the operation of the dam discussed in Washington DC.


2021 ◽  
Vol 3 ◽  
Author(s):  
Rosanna A. Lane ◽  
Alison L. Kay

Climate change could intensify hydrological extremes, changing not just the magnitude but also the timing of flood and drought events. Understanding these potential future changes to hydrological extremes at the national level is critical to guide policy decisions and ensure adequate adaptation measures are put in place. Here, climate change impact on the magnitude and timing of extreme flows is modelled across Great Britain (GB), using an ensemble of climate data from the latest UK Climate Projections product (UKCP18) and a national grid-based hydrological model. All ensemble members show large reductions in low flows, of around −90 to −25% for 10-year return period low flows by 2050–2080. The direction of change for high flows is uncertain, but increases in 10-year return period high flows of over 9% are possible across most of the country. Simultaneous worsening of both extremes (i.e., a reduction in low flows combined with an increase in high flows) are projected in the west. Changes to flow timing are also projected; with mostly earlier annual maximum flows across Scotland, later annual maximum flows across England and Wales, and later low flows across GB. However, these changes are generally not statistically significant due to the high interannual variability of annual maximum/minimum flow timing. These results highlight the need for adaptation strategies that can cope with a wide range of future changes in hydrological extremes, and consider changes in the timing as well as magnitude.


2021 ◽  
Author(s):  
Julian R. Thompson ◽  
Cédric L. R. Laizé ◽  
Michael C. Acreman ◽  
Andrew Crawley ◽  
Daniel G. Kingston

Abstract Modified water regimes due to climate change are likely to be a major cause of freshwater ecosystem alteration. General Circulation Model (GCM)-related uncertainty in environmental flows at 12 gauging stations in the Upper Niger Basin and flooding within the Inner Niger Delta is assessed using the Ecological Risk due to the Flow Alteration method and a hydrological model forced with projections from 12 GCM groups for RCP 4.5 in the 2050s and 2080s. Risk varies between GCM groups and stations. It increases into the future and is larger for changes in low flows compared to high flows. For the ensemble mean, a small minority of GCM groups projects no risk for high flows in the 2050s (low risk otherwise). This reverses for the 2080s. For low flows, no risk is limited to three stations in the 2050s and one station in the 2080s, the other experience either low or medium risk. There is greater consistency in the risk of change in flood extent, especially in the dry season (medium risk for all groups and the ensemble mean). Some (low or medium) risk of change in peak annual inundation is projected for most groups. Changing flood patterns have implications for wetland ecology and ecosystem services.


2021 ◽  
Author(s):  
Rosanna Lane ◽  
Gemma Coxon ◽  
Jim Freer ◽  
Jan Seibert ◽  
Thorsten Wagener

Abstract. Climate change may significantly increase flood risk across Great Britain (GB), but there are large uncertainties in both future climatic changes and how these propagate into changing river flows. Here, the impact of climate change on the magnitude and frequency of high flows is modelled for 346 larger (> 144 km2) catchments across GB using the latest UK Climate Projections (UKCP18) and the DECIPHeR hydrological modelling framework. This study provides the first spatially consistent GB projections including both climate ensembles and hydrological model parameter uncertainties. Generally, results indicated an increase in the magnitude and frequency of high flows (Q10, Q1 and annual maximum) along the west coast of GB in the future (2050–2075), with increases in annual maximum flows of up to 65 % for west Scotland. In contrast, median flows (Q50) were projected to decrease across GB. All flow projections contained large uncertainties, and while the RCMs were the largest source of uncertainty overall, hydrological modelling uncertainties were considerable in east and south-east England. Regional variation in flow projections were found to relate to i) differences in climatic change and ii) catchment conditions during the baseline period as characterised by the runoff coefficient (mean discharge divided by mean precipitation). Importantly, increased heavy-precipitation events (defined by an increase in 99th percentile precipitation) did not always result in increased flood flows for catchments with low runoff coefficients, highlighting the varying factors leading to changes in high flows. These results provide a national overview of climate change impacts on high flows across GB, which will inform climate change adaptation, while also highlighting the need to account for uncertainty sources when modelling climate change impact on high flows.


Sign in / Sign up

Export Citation Format

Share Document