Human Resources: A case study of must-have HR Policies, Hypothetical cases, Employment Legal Cases and their Worst-Case Analysis

Author(s):  
Arjun Dattaraju
2007 ◽  
Vol 1 (2) ◽  
pp. 111-136 ◽  
Author(s):  
Moshe Sniedovich

For obvious reasons, models for decision-making under severe uncertainty are austere. Simply put, there is precious little to work with under these conditions. This fact highlights the great importance of utilizing in such cases the ingredients of the mathematical model to the fullest extent, which in turn brings under the spotlight the art of mathematical modeling. In this discussion we examine some of the subtle considerations that are called for in the mathematical modeling of decision-making under severe uncertainty in general, and worst-case analysis in particular. As a case study we discuss the lessons learnt on this front from the Info-Gap experience.


Author(s):  
Hatim Djelassi ◽  
Stephane Fliscounakis ◽  
Alexander Mitsos ◽  
Patrick Panciatici

2013 ◽  
Vol 21 (10) ◽  
pp. 1823-1836 ◽  
Author(s):  
Yiyuan Xie ◽  
Mahdi Nikdast ◽  
Jiang Xu ◽  
Xiaowen Wu ◽  
Wei Zhang ◽  
...  

2010 ◽  
Vol 43 (15) ◽  
pp. 321-326 ◽  
Author(s):  
Wenfei Wang ◽  
Prathyush P. Menon ◽  
Nuno M. Gomes Paulino ◽  
Emanuele Di Sotto ◽  
Sohrab Salehi ◽  
...  

Algorithmica ◽  
2021 ◽  
Author(s):  
Jie Zhang

AbstractApart from the principles and methodologies inherited from Economics and Game Theory, the studies in Algorithmic Mechanism Design typically employ the worst-case analysis and design of approximation schemes of Theoretical Computer Science. For instance, the approximation ratio, which is the canonical measure of evaluating how well an incentive-compatible mechanism approximately optimizes the objective, is defined in the worst-case sense. It compares the performance of the optimal mechanism against the performance of a truthful mechanism, for all possible inputs. In this paper, we take the average-case analysis approach, and tackle one of the primary motivating problems in Algorithmic Mechanism Design—the scheduling problem (Nisan and Ronen, in: Proceedings of the 31st annual ACM symposium on theory of computing (STOC), 1999). One version of this problem, which includes a verification component, is studied by Koutsoupias (Theory Comput Syst 54(3):375–387, 2014). It was shown that the problem has a tight approximation ratio bound of $$(n+1)/2$$ ( n + 1 ) / 2 for the single-task setting, where n is the number of machines. We show, however, when the costs of the machines to executing the task follow any independent and identical distribution, the average-case approximation ratio of the mechanism given by Koutsoupias (Theory Comput Syst 54(3):375–387, 2014) is upper bounded by a constant. This positive result asymptotically separates the average-case ratio from the worst-case ratio. It indicates that the optimal mechanism devised for a worst-case guarantee works well on average.


Sign in / Sign up

Export Citation Format

Share Document