Fabrication of Parallel Hybrid Electric Two Wheeler

Author(s):  
Anupam Surana ◽  
Sreshtha Roy
Author(s):  
V. Krithika ◽  
C. Subramani

In this paper, design and simulation of a parallel hybrid electric two-wheeler motorcycle (PHETM) by means of continuous variable transmission (CVT) is illustrated. For simulation, the parallel hybrid electric power train model type in MATLAB/ADVISOR is customized. The internal combustion engine (ICE) be supposed to drive at elevated efficiency areas, in order to attain enhanced fuel economy and a reduced amount of emission. Simultaneously, the ICE must not activate at values of low torque areas. For that reason, get better it whilst ICE is ON, a new energy control strategy is proposed. In the new strategy, the electrical machine absorbs the extra torque of the ICE. This article proposes a PHETM system to propel the vehicle efficiently with reduced amounts of emission on comparing witha conventional vehicle. This system includes two modes of operations for achieving the better results known as motoring mode and generating mode. The switching from one mode to other is based on the vehicle speed which is sensed in real time. A drive cycle is generated by running the vehicle in normal and slightly gradient condition and finally the results are compared.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5538
Author(s):  
Bảo-Huy Nguyễn ◽  
João Pedro F. Trovão ◽  
Ronan German ◽  
Alain Bouscayrol

Optimization-based methods are of interest for developing energy management strategies due to their high performance for hybrid electric vehicles. However, these methods are often complicated and may require strong computational efforts, which can prevent them from real-world applications. This paper proposes a novel real-time optimization-based torque distribution strategy for a parallel hybrid truck. The strategy aims to minimize the engine fuel consumption while ensuring battery charge-sustaining by using linear quadratic regulation in a closed-loop control scheme. Furthermore, by reformulating the problem, the obtained strategy does not require the information of the engine efficiency map like the previous works in literature. The obtained strategy is simple, straightforward, and therefore easy to be implemented in real-time platforms. The proposed method is evaluated via simulation by comparison to dynamic programming as a benchmark. Furthermore, the real-time ability of the proposed strategy is experimentally validated by using power hardware-in-the-loop simulation.


Author(s):  
Dipanjan Mazumdar ◽  
Surajit Das ◽  
N Pramila Rao ◽  
A. Sivakumar ◽  
S. Jabez Dhinagar
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document