scholarly journals Free probability for purely discrete eigenvalues of random matrices

2018 ◽  
Vol 70 (3) ◽  
pp. 1111-1150 ◽  
Author(s):  
Benoit COLLINS ◽  
Takahiro HASEBE ◽  
Noriyoshi SAKUMA
Author(s):  
Serban T Belinschi ◽  
Hari Bercovici ◽  
Mireille Capitaine

Abstract Given a selfadjoint polynomial $P(X,Y)$ in two noncommuting selfadjoint indeterminates, we investigate the asymptotic eigenvalue behavior of the random matrix $P(A_N,B_N)$, where $A_N$ and $B_N$ are independent Hermitian random matrices and the distribution of $B_N$ is invariant under conjugation by unitary operators. We assume that the empirical eigenvalue distributions of $A_N$ and $B_N$ converge almost surely to deterministic probability measures $\mu$ and $\nu$, respectively. In addition, the eigenvalues of $A_N$ and $B_N$ are assumed to converge uniformly almost surely to the support of $\mu$ and $\nu ,$ respectively, except for a fixed finite number of fixed eigenvalues (spikes) of $A_N$. It is known that almost surely the empirical distribution of the eigenvalues of $P(A_N,B_N)$ converges to a certain deterministic probability measure $\eta \ (\textrm{sometimes denoted}\ P^\square(\mu,\nu))$ and, when there are no spikes, the eigenvalues of $P(A_N,B_N)$ converge uniformly almost surely to the support of $\eta$. When spikes are present, we show that the eigenvalues of $P(A_N,B_N)$ still converge uniformly to the support of $\eta$, with the possible exception of certain isolated outliers whose location can be determined in terms of $\mu ,\nu ,P$, and the spikes of $A_N$. We establish a similar result when $B_N$ is replaced by a Wigner matrix. The relation between outliers and spikes is described using the operator-valued subordination functions of free probability theory. These results extend known facts from the special case in which $P(X,Y)=X+Y$.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 638
Author(s):  
Xianjie Gao ◽  
Chao Zhang ◽  
Hongwei Zhang

Random matrices have played an important role in many fields including machine learning, quantum information theory, and optimization. One of the main research focuses is on the deviation inequalities for eigenvalues of random matrices. Although there are intensive studies on the large-deviation inequalities for random matrices, only a few works discuss the small-deviation behavior of random matrices. In this paper, we present the small-deviation inequalities for the largest eigenvalues of sums of random matrices. Since the resulting inequalities are independent of the matrix dimension, they are applicable to high-dimensional and even the infinite-dimensional cases.


Author(s):  
Tomohiro Hayase

We investigate parameter identifiability of spectral distributions of random matrices. In particular, we treat compound Wishart type and signal-plus-noise type. We show that each model is identifiable up to some kind of rotation of parameter space. Our method is based on free probability theory.


Sign in / Sign up

Export Citation Format

Share Document