Large time behavior of solutions for derivative cubic nonlinear Schrödinger equations

1999 ◽  
Vol 35 (3) ◽  
pp. 501-513 ◽  
Author(s):  
Nakao Hayashi ◽  
Pavel I. Naumkin ◽  
Hidetake Uchida
2005 ◽  
Vol 07 (02) ◽  
pp. 167-176 ◽  
Author(s):  
NAOYASU KITA ◽  
TOHRU OZAWA

A detailed description is given on the large time behavior of scattering solutions to the Cauchy problem for nonlinear Schrödinger equations with repulsive interactions in the short-range case without smallness condition on the data.


2008 ◽  
Vol 60 (5) ◽  
pp. 1168-1200 ◽  
Author(s):  
Michael Taylor

AbstractWe examine the fine structure of the short time behavior of solutions to various linear and nonlinear Schrödinger equations ut = iΔu+q(u) on I×ℝn, with initial data u(0, x) = f (x). Particular attention is paid to cases where f is piecewise smooth, with jump across an (n−1)-dimensional surface. We give detailed analyses of Gibbs-like phenomena and also focusing effects, including analogues of the Pinsky phenomenon. We give results for general n in the linear case. We also have detailed analyses for a broad class of nonlinear equations when n = 1 and 2, with emphasis on the analysis of the first order correction to the solution of the corresponding linear equation. This work complements estimates on the error in this approximation.


2015 ◽  
Vol 145 (6) ◽  
pp. 1251-1282 ◽  
Author(s):  
Stefan Le Coz ◽  
Dong Li ◽  
Tai-Peng Tsai

We study infinite soliton trains solutions of nonlinear Schrödinger equations, i.e. solutions behaving as the sum of infinitely many solitary waves at large time. Assuming the composing solitons have sufficiently large relative speeds, we prove the existence and uniqueness of such a soliton train. We also give a new construction of multi-solitons (i.e. finite trains) and prove uniqueness in an exponentially small neighbourhood, and we consider the case of solutions composed of several solitons and kinks (i.e. solutions with a non-zero background at infinity).


Author(s):  
Riccardo Molle ◽  
Donato Passaseo

AbstractThe paper deals with the equation $$-\Delta u+a(x) u =|u|^{p-1}u $$ - Δ u + a ( x ) u = | u | p - 1 u , $$u \in H^1({\mathbb {R}}^N)$$ u ∈ H 1 ( R N ) , with $$N\ge 2$$ N ≥ 2 , $$p> 1,\ p< {N+2\over N-2}$$ p > 1 , p < N + 2 N - 2 if $$N\ge 3$$ N ≥ 3 , $$a\in L^{N/2}_{loc}({\mathbb {R}}^N)$$ a ∈ L loc N / 2 ( R N ) , $$\inf a> 0$$ inf a > 0 , $$\lim _{|x| \rightarrow \infty } a(x)= a_\infty $$ lim | x | → ∞ a ( x ) = a ∞ . Assuming that the potential a(x) satisfies $$\lim _{|x| \rightarrow \infty }[a(x)-a_\infty ] e^{\eta |x|}= \infty \ \ \forall \eta > 0$$ lim | x | → ∞ [ a ( x ) - a ∞ ] e η | x | = ∞ ∀ η > 0 , $$ \lim _{\rho \rightarrow \infty } \sup \left\{ a(\rho \theta _1) - a(\rho \theta _2) \ :\ \theta _1, \theta _2 \in {\mathbb {R}}^N,\ |\theta _1|= |\theta _2|=1 \right\} e^{\tilde{\eta }\rho } = 0 \quad \text{ for } \text{ some } \ \tilde{\eta }> 0$$ lim ρ → ∞ sup a ( ρ θ 1 ) - a ( ρ θ 2 ) : θ 1 , θ 2 ∈ R N , | θ 1 | = | θ 2 | = 1 e η ~ ρ = 0 for some η ~ > 0 and other technical conditions, but not requiring any symmetry, the existence of infinitely many positive multi-bump solutions is proved. This result considerably improves those of previous papers because we do not require that a(x) has radial symmetry, or that $$N=2$$ N = 2 , or that $$|a(x)-a_\infty |$$ | a ( x ) - a ∞ | is uniformly small in $${\mathbb {R}}^N$$ R N , etc. ....


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 733
Author(s):  
Yu-Shan Bai ◽  
Peng-Xiang Su ◽  
Wen-Xiu Ma

In this paper, by using the gauge transformation and the Lax pairs, the N-fold Darboux transformation (DT) of the classical three-component nonlinear Schrödinger (NLS) equations is given. In addition, by taking seed solutions and using the DT, exact solutions for the given NLS equations are constructed.


Sign in / Sign up

Export Citation Format

Share Document