Large Time Asymptotics for the Fractional Order Cubic Nonlinear Schrödinger Equations

2016 ◽  
Vol 18 (3) ◽  
pp. 1025-1054 ◽  
Author(s):  
Nakao Hayashi ◽  
Pavel I. Naumkin
2015 ◽  
Vol 145 (6) ◽  
pp. 1251-1282 ◽  
Author(s):  
Stefan Le Coz ◽  
Dong Li ◽  
Tai-Peng Tsai

We study infinite soliton trains solutions of nonlinear Schrödinger equations, i.e. solutions behaving as the sum of infinitely many solitary waves at large time. Assuming the composing solitons have sufficiently large relative speeds, we prove the existence and uniqueness of such a soliton train. We also give a new construction of multi-solitons (i.e. finite trains) and prove uniqueness in an exponentially small neighbourhood, and we consider the case of solutions composed of several solitons and kinks (i.e. solutions with a non-zero background at infinity).


Author(s):  
Riccardo Molle ◽  
Donato Passaseo

AbstractThe paper deals with the equation $$-\Delta u+a(x) u =|u|^{p-1}u $$ - Δ u + a ( x ) u = | u | p - 1 u , $$u \in H^1({\mathbb {R}}^N)$$ u ∈ H 1 ( R N ) , with $$N\ge 2$$ N ≥ 2 , $$p> 1,\ p< {N+2\over N-2}$$ p > 1 , p < N + 2 N - 2 if $$N\ge 3$$ N ≥ 3 , $$a\in L^{N/2}_{loc}({\mathbb {R}}^N)$$ a ∈ L loc N / 2 ( R N ) , $$\inf a> 0$$ inf a > 0 , $$\lim _{|x| \rightarrow \infty } a(x)= a_\infty $$ lim | x | → ∞ a ( x ) = a ∞ . Assuming that the potential a(x) satisfies $$\lim _{|x| \rightarrow \infty }[a(x)-a_\infty ] e^{\eta |x|}= \infty \ \ \forall \eta > 0$$ lim | x | → ∞ [ a ( x ) - a ∞ ] e η | x | = ∞ ∀ η > 0 , $$ \lim _{\rho \rightarrow \infty } \sup \left\{ a(\rho \theta _1) - a(\rho \theta _2) \ :\ \theta _1, \theta _2 \in {\mathbb {R}}^N,\ |\theta _1|= |\theta _2|=1 \right\} e^{\tilde{\eta }\rho } = 0 \quad \text{ for } \text{ some } \ \tilde{\eta }> 0$$ lim ρ → ∞ sup a ( ρ θ 1 ) - a ( ρ θ 2 ) : θ 1 , θ 2 ∈ R N , | θ 1 | = | θ 2 | = 1 e η ~ ρ = 0 for some η ~ > 0 and other technical conditions, but not requiring any symmetry, the existence of infinitely many positive multi-bump solutions is proved. This result considerably improves those of previous papers because we do not require that a(x) has radial symmetry, or that $$N=2$$ N = 2 , or that $$|a(x)-a_\infty |$$ | a ( x ) - a ∞ | is uniformly small in $${\mathbb {R}}^N$$ R N , etc. ....


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 733
Author(s):  
Yu-Shan Bai ◽  
Peng-Xiang Su ◽  
Wen-Xiu Ma

In this paper, by using the gauge transformation and the Lax pairs, the N-fold Darboux transformation (DT) of the classical three-component nonlinear Schrödinger (NLS) equations is given. In addition, by taking seed solutions and using the DT, exact solutions for the given NLS equations are constructed.


Sign in / Sign up

Export Citation Format

Share Document