scholarly journals Nonexistence of Positive Solutions to an Elliptic System and Blow-Up Rate for a Parabolic System

Author(s):  
Z.Q. Ling
1994 ◽  
Vol 113 (2) ◽  
pp. 265-271 ◽  
Author(s):  
G. Caristi ◽  
E. Mitidieri

2004 ◽  
Vol 14 (10) ◽  
pp. 1425-1450 ◽  
Author(s):  
CRISTINA BRÄNDLE ◽  
PABLO GROISMAN ◽  
JULIO D. ROSSI

We present adaptive procedures in space and time for the numerical study of positive solutions to the following problem: [Formula: see text] with p,m>0. We describe how to perform adaptive methods in order to reproduce the exact asymptotic behavior (the blow-up rate and the blow-up set) of the continuous problem.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Jun Zhou

This paper considers the singularity properties of positive solutions for a reaction-diffusion system with nonlocal boundary condition. The conditions on the existence and nonexistence of global positive solutions are given. Moreover, we establish the blow-up rate estimate for the blow-up solution.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Juntang Ding ◽  
Chenyu Dong

<p style='text-indent:20px;'>The main purpose of the present paper is to study the blow-up problem of a weakly coupled quasilinear parabolic system as follows:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{ \begin{array}{ll} u_{t} = \nabla\cdot\left(r(u)\nabla u\right)+f(u,v,x,t), &amp; \\ v_{t} = \nabla\cdot\left(s(v)\nabla v\right)+g(u,v,x,t) &amp;{\rm in} \ \Omega\times(0,t^{*}), \\ \frac{\partial u}{\partial\nu} = h(u), \ \frac{\partial v}{\partial\nu} = k(v) &amp;{\rm on} \ \partial\Omega\times(0,t^{*}), \\ u(x,0) = u_{0}(x), \ v(x,0) = v_{0}(x) &amp;{\rm in} \ \overline{\Omega}. \end{array} \right. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>Here <inline-formula><tex-math id="M1">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a spatial bounded region in <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{R}^{n} \ (n\geq2) $\end{document}</tex-math></inline-formula> and the boundary <inline-formula><tex-math id="M3">\begin{document}$ \partial\Omega $\end{document}</tex-math></inline-formula> of the spatial region <inline-formula><tex-math id="M4">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is smooth. We give a sufficient condition to guarantee that the positive solution <inline-formula><tex-math id="M5">\begin{document}$ (u,v) $\end{document}</tex-math></inline-formula> of the above problem must be a blow-up solution with a finite blow-up time <inline-formula><tex-math id="M6">\begin{document}$ t^* $\end{document}</tex-math></inline-formula>. In addition, an upper bound on <inline-formula><tex-math id="M7">\begin{document}$ t^* $\end{document}</tex-math></inline-formula> and an upper estimate of the blow-up rate on <inline-formula><tex-math id="M8">\begin{document}$ (u,v) $\end{document}</tex-math></inline-formula> are obtained.</p>


Sign in / Sign up

Export Citation Format

Share Document