scholarly journals A Tool Path Generation Method for Sculptured Surface Based on the Vector Field of Maximum Strip Width

Author(s):  
Cheng Su ◽  
Xin Jiang ◽  
Guanying Huo ◽  
Danlei Ye ◽  
Zehong Lu ◽  
...  
Author(s):  
Shuoxue Sun ◽  
Yuwen Sun ◽  
Jinting Xu ◽  
Yuan-Shin Lee

This paper presents a new vector-field-based streamline smoothing method in the parametric space and a tool orientation optimization technique for five-axis machining of complex compound surfaces with torus-end cutters. Iso-planar tool path is widely used in the machining of various types of surfaces, especially for the compound surface with multiple patches, but the operations of intersecting the compound surface with a series of planes have depended considerably on the complicated optimization methods. Instead of intersecting the surface directly with planes, a novel and effective tool path smoothing method is presented, based on the iso-planar feed vector fields, for five-axis milling of a compound surface with torus-end cutters. The iso-planar feed vector field in the parametric domain is first constructed in the form of stream function that is used to generate the candidate streamlines for tool path generation. Then, a G1 blending algorithm is proposed to blend the vector fields within the adjacent parametric domains to ensure smooth transition of cross-border streamlines. Based on the smoothened streamlines in the parametric domains, pathlines along with their correspondent side sizes are selected as desirable tool paths. Concerning a high performance machining, detailed computational techniques to determine the tool axis orientation are also presented to ensure, at each cutter contact (CC) point, the torus-end cutter touches the part surface closely without gouging. Both the computational results and machined examples are demonstrated for verification and validation of the proposed methods.


2007 ◽  
Vol 10-12 ◽  
pp. 308-311
Author(s):  
Li Cheng Fan ◽  
L.N. Sun ◽  
Zhi Jiang Du

In 3-axis NC machining, most algorithms of the sculptured surface tool-path generation are valid for ball-cutter, and the axes are designed to realize pure translation. A tool-path generation algorithm using taper-cuter is proposed in this article. And one axis of the 3-axis NC tool machine is designed to realize swing motion. The Stereo Lithography (STL) model is the most popular triangular mesh approximation of the 3D surface model. Considering the special swing mechanical and taper-cutter, arc-zigzag tool-path planning and deform Z-map grid methods are proposed, which incorporate triangular vertexes method and the Z-map method. Finally, some simulation and experiment results are provided.


2010 ◽  
Vol 97-101 ◽  
pp. 2477-2480
Author(s):  
Xu Jing Yang ◽  
Guang Yong Sun ◽  
Qing Li

This paper proposes a new approach to tool path generation in precision machining of parts with sculptured surface. It aims to develop an effective NURBS fitting algorithm suitable for machining sophisticated parts requiring smooth profile on sculptured surface. In order to generate NURBS tool path with fewer control points, a dual-loop fitting technique is proposed in this paper. A general sculptured surface model is used to test the effectiveness of this method. It is shown that the proposed algorithm proved to be robust and effective in generating precise NURBS tool path. This makes the proposed algorithm suitable to convert conventional CNC tool path to more precise NURBS tool path. This approach may be of potential to be widely implemented in the manufacturing industry.


Sign in / Sign up

Export Citation Format

Share Document