scholarly journals A Second Order Asymmetric Finite Difference Method for the Black-Scholes Equation of European Options

Author(s):  
Wenbin Feng ◽  
Philsu Kim ◽  
Xiangfan Piao
1989 ◽  
Vol 79 (4) ◽  
pp. 1210-1230
Author(s):  
C. R. Daudt ◽  
L. W. Braile ◽  
R. L. Nowack ◽  
C. S. Chiang

Abstract The Fourier method, the second-order finite-difference method, and a fourth-order implicit finite-difference method have been tested using analytical phase and group velocity calculations, homogeneous velocity model calculations for disperson analysis, two-dimensional layered-interface calculations, comparisons with the Cagniard-de Hoop method, and calculations for a laterally heterogeneous model. Group velocity rather than phase velocity dispersion calculations are shown to be a more useful aid in predicting the frequency-dependent travel-time errors resulting from grid dispersion, and in establishing criteria for estimating equivalent accuracy between discrete grid methods. Comparison of the Fourier method with the Cagniard-de Hoop method showed that the Fourier method produced accurate seismic traces for a planar interface model even when a relatively coarse grid calculation was used. Computations using an IBM 3083 showed that Fourier method calculations using fourth-order time derivatives can be performed using as little as one-fourth the CPU time of an equivalent second-order finite-difference calculation. The Fourier method required a factor of 20 less computer storage than the equivalent second-order finite-difference calculation. The fourth-order finite-difference method required two-thirds the CPU time and a factor of 4 less computer storage than the second-order calculation. For comparison purposes, equivalent runs were determined by allowing a group velocity error tolerance of 2.5 per cent numerical dispersion for the maximum seismic frequency in each calculation. The Fourier method was also applied to a laterally heterogeneous model consisting of random velocity variations in the lower half-space. Seismograms for the random velocity model resulted in anticipated variations in amplitude with distance, particularly for refracted phases.


2020 ◽  
Vol 40 (1) ◽  
pp. 13-27
Author(s):  
Tanmoy Kumar Debnath ◽  
ABM Shahadat Hossain

In this paper, we have applied the finite difference methods (FDMs) for the valuation of European put option (EPO). We have mainly focused the application of Implicit finite difference method (IFDM) and Crank-Nicolson finite difference method (CNFDM) for option pricing. Both these techniques are used to discretized Black-Scholes (BS) partial differential equation (PDE). We have also compared the convergence of the IFDM and CNFDM to the analytic BS price of the option. This turns out a conclusion that both these techniques are fairly fruitful and excellent for option pricing. GANIT J. Bangladesh Math. Soc.Vol. 40 (2020) 13-27


2018 ◽  
Vol 1 (1) ◽  
pp. 45
Author(s):  
Werry Febrianti

Option can be defined as a contract between two sides/parties said party one and party two. Party one has the right to buy or sell of stock to party two. Party two can invest by observe the put option price or call option price on a time period in the option contract. Black-Scholes option solution using finite difference method based on forward time central space (FTCS) can be used as the reference for party two in the investment determining. Option price determining by using Black-Scholes was applied on Samsung stock (SSNLF) by using finite difference method FTCS. Daily data of Samsung stock in one year was processed to obtain the volatility of the stock. Then, the call option and put option are calculated by using FTCS method after discretization on the Black-Scholes model. The value of call option was obtained as $1.457695030014260 and the put option value was obtained as $1.476925604670225.


Sign in / Sign up

Export Citation Format

Share Document