scholarly journals Facial Expression Recognition Using Thermal Image Processing and Efficient Preparation of Training-data

2015 ◽  
Vol 2 (2) ◽  
pp. 79 ◽  
Author(s):  
Yuu Nakanishi ◽  
Yasunari Yoshitomi ◽  
Taro Asada ◽  
Masayoshi Tabuse
2011 ◽  
Vol 16 (3) ◽  
pp. 318-323 ◽  
Author(s):  
Yasunari Yoshitomi ◽  
Taro Asada ◽  
Kyouhei Shimada ◽  
Masayoshi Tabuse

2021 ◽  
Vol 14 (2) ◽  
pp. 127-135
Author(s):  
Fadhil Yusuf Rahadika ◽  
Novanto Yudistira ◽  
Yuita Arum Sari

During the COVID-19 pandemic, many offline activities are turned into online activities via video meetings to prevent the spread of the COVID 19 virus. In the online video meeting, some micro-interactions are missing when compared to direct social interactions. The use of machines to assist facial expression recognition in online video meetings is expected to increase understanding of the interactions among users. Many studies have shown that CNN-based neural networks are quite effective and accurate in image classification. In this study, some open facial expression datasets were used to train CNN-based neural networks with a total number of training data of 342,497 images. This study gets the best results using ResNet-50 architecture with Mish activation function and Accuracy Booster Plus block. This architecture is trained using the Ranger and Gradient Centralization optimization method for 60000 steps with a batch size of 256. The best results from the training result in accuracy of AffectNet validation data of 0.5972, FERPlus validation data of 0.8636, FERPlus test data of 0.8488, and RAF-DB test data of 0.8879. From this study, the proposed method outperformed plain ResNet in all test scenarios without transfer learning, and there is a potential for better performance with the pre-training model. The code is available at https://github.com/yusufrahadika-facial-expressions-essay.


2020 ◽  
Vol 28 (1) ◽  
pp. 97-111
Author(s):  
Nadir Kamel Benamara ◽  
Mikel Val-Calvo ◽  
Jose Ramón Álvarez-Sánchez ◽  
Alejandro Díaz-Morcillo ◽  
Jose Manuel Ferrández-Vicente ◽  
...  

Facial emotion recognition (FER) has been extensively researched over the past two decades due to its direct impact in the computer vision and affective robotics fields. However, the available datasets to train these models include often miss-labelled data due to the labellers bias that drives the model to learn incorrect features. In this paper, a facial emotion recognition system is proposed, addressing automatic face detection and facial expression recognition separately, the latter is performed by a set of only four deep convolutional neural network respect to an ensembling approach, while a label smoothing technique is applied to deal with the miss-labelled training data. The proposed system takes only 13.48 ms using a dedicated graphics processing unit (GPU) and 141.97 ms using a CPU to recognize facial emotions and reaches the current state-of-the-art performances regarding the challenging databases, FER2013, SFEW 2.0, and ExpW, giving recognition accuracies of 72.72%, 51.97%, and 71.82% respectively.


2008 ◽  
Vol 381-382 ◽  
pp. 375-378
Author(s):  
K.T. Song ◽  
M.J. Han ◽  
F.Y. Chang ◽  
S.H. Chang

The capability of recognizing human facial expression plays an important role in advanced human-robot interaction development. Through recognizing facial expressions, a robot can interact with a user in a more natural and friendly manner. In this paper, we proposed a facial expression recognition system based on an embedded image processing platform to classify different facial expressions on-line in real time. A low-cost embedded vision system has been designed and realized for robotic applications using a CMOS image sensor and digital signal processor (DSP). The current design acquires thirty 640x480 image frames per second (30 fps). The proposed emotion recognition algorithm has been successfully implemented on the real-time vision system. Experimental results on a pet robot show that the robot can interact with a person in a responding manner. The developed image processing platform is effective for accelerating the recognition speed to 25 recognitions per second with an average on-line recognition rate of 74.4% for five facial expressions.


Sign in / Sign up

Export Citation Format

Share Document