scholarly journals On the existence and uniqueness of solutions of stochastic integral equations of the Volterra type

1979 ◽  
Vol 2 (2) ◽  
pp. 158-170 ◽  
Author(s):  
Ichiro Ito
2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
K. Balachandran ◽  
J.-H. Kim

We establish sufficient conditions for the existence and uniqueness of random solutions of nonlinear Volterra-Fredholm stochastic integral equations of mixed type by using admissibility theory and fixed point theorems. The results obtained in this paper generalize the results of several papers.


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3253-3274
Author(s):  
Marek Malinowski ◽  
Donal O'Regan

We investigate bilateral set-valued stochastic integral equations and these equations combine widening and narrrowing set-valued stochastic integral equations studied in literature. An existence and uniqueness theorem is established using approximate solutions. In addition stability of the solution with respect to small changes of the initial state and coefficients is established, also we provide a result on boundedness of the solution, and an estimate on a distance between the exact solution and the approximate solution is given. Finally some implications for deterministic set-valued integral equations are presented.


Author(s):  
ZHIYUAN HUANG ◽  
CAISHI WANG ◽  
XIANGJUN WANG

Quantum integral equation of Volterra type with generalized operator-valued kernel is introduced. Existence and uniqueness of solutions are established, explicit expression of the solution is given, the continuity, continuous dependence on free terms and other properties of the solution are proved.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Marek T. Malinowski

AbstractWe analyze the set-valued stochastic integral equations driven by continuous semimartingales and prove the existence and uniqueness of solutions to such equations in the framework of the hyperspace of nonempty, bounded, convex and closed subsets of the Hilbert space L2 (consisting of square integrable random vectors). The coefficients of the equations are assumed to satisfy the Osgood type condition that is a generalization of the Lipschitz condition. Continuous dependence of solutions with respect to data of the equation is also presented. We consider equations driven by semimartingale Z and equations driven by processes A;M from decomposition of Z, where A is a process of finite variation and M is a local martingale. These equations are not equivalent. Finally, we show that the analysis of the set-valued stochastic integral equations can be extended to a case of fuzzy stochastic integral equations driven by semimartingales under Osgood type condition. To obtain our results we use the set-valued and fuzzy Maruyama type approximations and Bihari’s inequality.


Sign in / Sign up

Export Citation Format

Share Document