Three-Phase Induction Motor Speed Estimation Using Recurrent Neural Network Structure

Author(s):  
Adam Islam Ridhatullah ◽  
◽  
Ariffuddin Joret ◽  
Iradiratu Diah Prahmana Karyatanti ◽  
Asmarashid Ponniran ◽  
...  

In induction motor speed control method, the development of the field-oriented control (FOC) algorithm which can control torque and flux separately enables the motor to replace many roles of DC motors. Induction motor speed control can be done by using a close loop system which requires a speed sensor. Referring to the speed sensor weaknesses such as less accurate of the measurement, this is due to the placement of the sensor system that is too far from the control system. Therefore, a speed sensorless method was developed which has various advantages. In this study, the speed sensorless method using an artificial neural network with recurrent neural network (RNN) as speed observer on three-phase induction motor has been discussed. The RNN can maintain steady-state conditions against a well-defined set point speed, so that the observer is able and will be suitable if applied as input control for the motor drives. In this work, the RNN has successfully estimated the rotor flux of the induction motor in MATLAB R2019a simulation as about 0.0004Wb. As based on speed estimation error, the estimator used has produced at about 26.77%, 8.7% and 6.1% for 150rad/s, 200rad/s and 250rad/s respectively. The future work can be developed and improved by creating a prototype system of the induction motor to get more accurate results in real-time of the proposed RNN observer.

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2176 ◽  
Author(s):  
Narongrit Pimkumwong ◽  
Ming-Shyan Wang

This paper presents the speed estimator for speed sensorless direct torque control of a three-phase induction motor based on constant voltage per frequency (V/F) control technique, using artificial neural network (ANN). The estimated stator current equation is derived and rearranged consistent with the control algorithm and ANN structure. For the speed estimation, a weight in ANN, which relates to the speed, is adjusted by using Widrow–Hoff learning rule to minimize the sum of squared errors between the measured stator current and the estimated stator current from ANN output. The consequence of using this method leads to the ability of online speed estimation and simple ANN structure. The simulation and experimental results in high- and low-speed regions have confirmed the validity of the proposed speed estimation method.


Sign in / Sign up

Export Citation Format

Share Document