tuning mechanism
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 36)

H-INDEX

22
(FIVE YEARS 3)

Nanoscale ◽  
2022 ◽  
Author(s):  
Xiaocan Xu ◽  
Ruijia Xu ◽  
Yu-Sheng Lin

Vanadium dioxide (VO2) based metamaterial perfect absorbers (MPAs) have high potential application values in sensing gas molecules. However, such tuning mechanism via temperature manipulation lacks the compatibility to the electronic...


Nano Energy ◽  
2021 ◽  
pp. 106741
Author(s):  
Yizhan Yang ◽  
Wanli Yang ◽  
Yunbo Wang ◽  
Xiangbin Zeng ◽  
Yuantai Hu

2021 ◽  
Vol 11 (10) ◽  
pp. 4428
Author(s):  
Zalifah Ramli ◽  
Jafferi Jamaludin ◽  
Nasrudin Abd Rahim ◽  
Saaidal Razalli Azzuhri

Switch-sharing-based multilevel inverters offer great advantages in terms of efficiency improvement and output quality enhancement for low-power photovoltaic (PV) applications. However, the capacitor voltage balancing issue may critically deteriorate the output voltages, and thus could nullify the aforementioned benefits. Hence, this paper proposes a capacitor voltage balancing solution based on a buck-boost converter with performance-based tuning controllers to address the issue. The proposed controllers are designed based on the proportional-integral (PI) configuration equipped with an online tuning mechanism. The main purpose of the online tuning mechanism is to fine tune the proportional gain according to the DC input voltage, based on the measured output current total harmonic distortion (THD) performance of the inverter, while at the same time preventing the controller from reaching a state of saturation. By using the actual measurement of current THD performance, online tuning accuracy can be improved since no ideal condition is assumed, and thus, the associated error can be minimized. Simulation and experimental results reveal that the capacitor voltages can be balanced at high modulation indexes with improved current harmonic performance able to be be acquired at the inverter’s output.


2021 ◽  
Vol 118 (12) ◽  
pp. e2025094118
Author(s):  
Sepalika Bandara ◽  
Nathan C. Rockwell ◽  
Xiaoli Zeng ◽  
Zhong Ren ◽  
Cong Wang ◽  
...  

Cyanobacteriochromes (CBCRs) are small, linear tetrapyrrole (bilin)-binding photoreceptors in the phytochrome superfamily that regulate diverse light-mediated adaptive processes in cyanobacteria. More spectrally diverse than canonical red/far-red–sensing phytochromes, CBCRs were thought to be restricted to sensing visible and near UV light until recently when several subfamilies with far-red–sensing representatives (frCBCRs) were discovered. Two of these frCBCRs subfamilies have been shown to incorporate bilin precursors with larger pi-conjugated chromophores, while the third frCBCR subfamily uses the same phycocyanobilin precursor found in the bulk of the known CBCRs. To elucidate the molecular basis of far-red light perception by this third frCBCR subfamily, we determined the crystal structure of the far-red–absorbing dark state of one such frCBCR Anacy_2551g3 from Anabaena cylindrica PCC 7122 which exhibits a reversible far-red/orange photocycle. Determined by room temperature serial crystallography and cryocrystallography, the refined 2.7-Å structure reveals an unusual all-Z,syn configuration of the phycocyanobilin (PCB) chromophore that is considerably less extended than those of previously characterized red-light sensors in the phytochrome superfamily. Based on structural and spectroscopic comparisons with other bilin-binding proteins together with site-directed mutagenesis data, our studies reveal protein–chromophore interactions that are critical for the atypical bathochromic shift. Based on these analyses, we propose that far-red absorption in Anacy_2551g3 is the result of the additive effect of two distinct red-shift mechanisms involving cationic bilin lactim tautomers stabilized by a constrained all-Z,syn conformation and specific interactions with a highly conserved anionic residue.


Sign in / Sign up

Export Citation Format

Share Document