Marine Propeller and Rudder Cavitation Erosion from Full Scale Observations and the Results of a Research Programme

2018 ◽  
Vol 5 (4) ◽  
pp. 337-354
Author(s):  
Ioannis Armakolas ◽  
John Carlton
Author(s):  
Poul Andersen ◽  
Jürgen Friesch ◽  
Jens J. Kappel

2021 ◽  
Vol 1 (395) ◽  
pp. 13-34
Author(s):  
A. Pustoshny ◽  

Object and purpose of research. This paper discusses cavitation erosion on propeller blades. The purpose of this work is to review and analyse modern studies on cavitation erosion, as well as to apply these research results for better under-standing of cavitation damage risk on full-scale propellers. Materials and methods. The paper reviews recent studies on cavitation erosion, as well as the author’s own findings in cavitation erosion on full-scale steel propellers, analyzing the energy needed to create cavitation damage of recorded size. This energy was calculated as per the model based on the results of metallurgical studies discussing the effect of shot blasting upon steel properties. Comparison of these results with those obtained as per classic formulae for the collapse energy of cavita-tion bubble made it possible to estimate the conditions of cavitation erosion on propeller blades. Main results. The review of recent studies on cavitation erosion has shown that current progress in the technologies of experimental studies and computer-based simulations made it possible to considerably improve the knowledge about cavitation erosion process as compared to the level of the 20th century. This review shows that cavitation erosion studies followed three practically independent paths: experimental studies and computer-based simulation of flow around propeller blades with locali-zation of peaks for one or several criteria reflecting the intensity of cavitation energy fluctuations; the studies intended to esti-mate the pressure exerted by collapsing cavitation bubbles and emerging cumulative jets; and finally, the studies on the proper-ties of materials affected by cumulative jets and collapsing bubbles. At this point, it would be practicable to merge these three paths using the results of full-scale cavitation erosion analysis for propellers. KSRC findings in cavitation damage of full-scale steel propeller has shown that cavitation damage recorded in these studies might occur due to a certain combination between the required energy, bubble-blade interaction pressure and the size of affect-ed area on steel blade surface, and this combination, in its turn, might take place when cavitation bubbles consisting of vapour fraction with partial air content hit the blade surface and collapse. Conclusion. This paper shows the capabilities of modern research methods in obtaining new data on the inception mecha-nism of cavitation erosion. Still, to develop the methods for prediction of cavitation erosion (in particular, on propellers), it is necessary to merge the results obtained in different branches of cavitation studies. The basis for this merging could become a power-based analysis of cavitation processes, with help of the cavitation erosion model suggested in this paper and based on the similarity between cavitation erosion and shot-blasting.


Wear ◽  
2018 ◽  
Vol 408-409 ◽  
pp. 1-12 ◽  
Author(s):  
Andreas Peters ◽  
Udo Lantermann ◽  
Ould el Moctar

Author(s):  
Andrew Cosham ◽  
David G. Jones ◽  
Keith Armstrong ◽  
Daniel Allason ◽  
Julian Barnett

Two full-scale fracture propagation tests have been conducted using dense phase carbon dioxide (CO2)-rich mixtures at the Spadeadam Test Site, United Kingdom (UK). The tests were conducted on behalf of National Grid Carbon, UK, as part of the COOLTRANS research programme. The semi-empirical Two Curve Model, developed by the Battelle Memorial Institute in the 1970s, is widely used to set the (pipe body) toughness requirements for pipelines transporting lean and rich natural gas. However, it has not been validated for applications involving dense phase CO2 or CO2-rich mixtures. One significant difference between the decompression behaviour of dense phase CO2 and a lean or rich gas is the very long plateau in the decompression curve. The objective of the two tests was to determine the level of ‘impurities’ that could be transported by National Grid Carbon in a 914.0 mm outside diameter, 25.4 mm wall thickness, Grade L450 pipeline, with arrest at an upper shelf Charpy V-notch impact energy (toughness) of 250 J. The level of impurities that can be transported is dependent on the saturation pressure of the mixture. Therefore, the first test was conducted at a predicted saturation pressure of 80.5 barg and the second test was conducted at a predicted saturation pressure of 73.4 barg. A running ductile fracture was successfully initiated in the initiation pipe and arrested in the test section in both of the full-scale tests. The main experimental data, including the layout of the test sections, and the decompression and timing wire data, are summarised and discussed. The results of the two full-scale fracture propagation tests demonstrate that the Two Curve Model is not (currently) applicable to liquid or dense phase CO2 or CO2-rich mixtures.


2010 ◽  
Vol 22 (S1) ◽  
pp. 705-710 ◽  
Author(s):  
Bin Ji ◽  
Xian-wu Luo ◽  
Yu-lin Wu ◽  
Shu-hong Liu ◽  
Hong-yuan Xu ◽  
...  

2013 ◽  
Vol 117 (1198) ◽  
pp. 1207-1231 ◽  
Author(s):  
R. I. Hoff ◽  
G. B. Gratton

Abstract The aerodynamic flow conditions on wings and tail surfaces due to the rotational motion of a spinning aeroplane have been investigated in a full-scale spin flight research programme at the Brunel Flight Safety Laboratory. The wing upper surface vortex has been visualised using smoke and tufts on the wing of a Slingsby Firefly. The flow structures on top of both wings, and on top of the horizontal tail surfaces, have also been studied on a Saab Safir. The development of these rotational flow effects has been related to the spin motion and the effect on the spin dynamics has been studied and discussed. Evidence suggests that the turbulent wake from the wing upper surface vortex impinges the tail of the aircraft during the spin entry. It is hypothesised that the turbulent flow structure on the outside upper wing surface is due to additional accelerations induced by the rotational motion of the aeroplane. Furthermore, the lightening in stick force during spin entry and the apparent increase in push force required for spin recovery corresponds to the observed change in flow condition on the horizontal tail. The difference in pressure on the upper and lower horizontal tail surfaces have been measured using differential pressure sensors, and the result corresponds both with the observed flow conditions and earlier research results from NASA.


Sign in / Sign up

Export Citation Format

Share Document