Initial problem for a nonlinear integro-differential equation with a higher-order hyperbolic operator and with reflection of the argument

Author(s):  
T.K. Yuldashev ◽  
J.A. Artykova

In this paper it is studied the questions of one value solvability of initial value problem for nonlinear integro-differential equation with hyperbolic operator of the higher order, with degenerate kernel and reflective argument for regular values of spectral parameter. It is expressed the partial differential operator on the left-hand side of equation of higher order by the superposition of first-order partial differential operators. This is allowed us to present the considering integro-differential equation as an integral equation, describing the change of the unknown function along the characteristic. Further is applied the method of degenerate kernel. In proof of the theorem on one-value solvability of initial value problem is applied the method of successive approximations. Also is proved the stability of this solution with respect to the initial functions.

Geophysics ◽  
2003 ◽  
Vol 68 (2) ◽  
pp. 718-732 ◽  
Author(s):  
Sergey Fomel

I introduce a partial differential equation to describe the process of prestack reflection data transformation in the offset, midpoint, and time coordinates. The equation is proved theoretically to provide correct kinematics and amplitudes on the transformed constant‐offset sections. Solving an initial‐value problem with the proposed equation leads to integral and frequency‐domain offset continuation operators, which reduce to the known forms of dip moveout operators in the case of continuation to zero offset.


2012 ◽  
Vol 45 (4) ◽  
Author(s):  
Aldona Dutkiewicz

AbstractThe paper contains an existence theorem for local solutions of an initial value problem for a nonlinear integro-differential equation in Banach spaces. The assumptions and proofs are expressed in terms of measures of noncompactness.


Author(s):  
I.A. Usenov ◽  
Yu.V. Kostyreva ◽  
S. Almambet kyzy

In this paper, we propose a method for studying the initial value problem for a first-order nonlinear integro-differential equation. The initial problem is reduced by substitution to a nonlinear integral equation with the Urson operator. To construct a solution to a nonlinear integral equation, the Newton-Kantorovich method is used.


Author(s):  
Sharif E. Guseynov ◽  
Alexander V. Berezhnoy

In this paper non-deterministic motion of urban traffic is studied under certain assumptions. Based on those assumptions discrete and continuous mathematical models are developed: continuous model is written as the Cauchy initial-value problem for the integro-differential equation, whence among other things it is obtained the Fokker-Planck equation. Besides, the sufficient condition ensuring the mathematical legitimacy of the developed continuous model is formulated.


Sign in / Sign up

Export Citation Format

Share Document