Parametric optimal control problems with weighted L 1-norm in the cost function

2010 ◽  
Vol 44 (4) ◽  
pp. 179-190 ◽  
Author(s):  
O. I. Kostyukova ◽  
E. A. Kostina ◽  
N. M. Fedortsova
2012 ◽  
Vol 50 (4) ◽  
pp. 1995-2024 ◽  
Author(s):  
Saurabh A. Deshpande ◽  
Dominique Bonvin ◽  
Benoît Chachuat

2016 ◽  
Vol 24 (1) ◽  
Author(s):  
Elimboto M. Yohana ◽  
Mapundi K. Banda

AbstractA computational investigation of optimal control problems which are constrained by hyperbolic systems of conservation laws is presented. The general framework is to employ the adjoint-based optimization to minimize the cost functional of matching-type between the optimal and the target solution. Extension of the numerical schemes to second-order accuracy for systems for the forward and backward problem are applied. In addition a comparative study of two relaxation approaches as solvers for hyperbolic systems is undertaken. In particular optimal control of the 1-D Riemann problem of Euler equations of gas dynamics is studied. The initial values are used as control parameters. The numerical flow obtained by optimal initial conditions matches accurately with observations.


2019 ◽  
Vol 12 (1) ◽  
pp. 138-152 ◽  
Author(s):  
Tao Han ◽  
Bo Xiao ◽  
Xi-Sheng Zhan ◽  
Jie Wu ◽  
Hongling Gao

Purpose The purpose of this paper is to investigate time-optimal control problems for multiple unmanned aerial vehicle (UAV) systems to achieve predefined flying shape. Design/methodology/approach Two time-optimal protocols are proposed for the situations with or without human control input, respectively. Then, Pontryagin’s minimum principle approach is applied to deal with the time-optimal control problems for UAV systems, where the cost function, the initial and terminal conditions are given in advance. Moreover, necessary conditions are derived to ensure that the given performance index is optimal. Findings The effectiveness of the obtained time-optimal control protocols is verified by two contrastive numerical simulation examples. Consequently, the proposed protocols can successfully achieve the prescribed flying shape. Originality/value This paper proposes a solution to solve the time-optimal control problems for multiple UAV systems to achieve predefined flying shape.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Jinghao Zhu ◽  
Shangrui Zhao ◽  
Guohua Liu

This paper presents a backward differential flow for solving singular optimal control problems. By using Krotov equivalent transformation, the cost functional is converted to a class of global optimization problems. Some properties of the flow are given to reveal the significant relationship between the dynamic of the flow and the geometry of the feasible set. The proposed method is also used in solving a class of variational problems. Some examples are illustrated.


Sign in / Sign up

Export Citation Format

Share Document