Modeling free oscillations of an isotropic cylindrical shell with a variable thickness and density

2015 ◽  
Vol 44 (5) ◽  
pp. 434-438 ◽  
Author(s):  
A. A. Mochalin
1990 ◽  
Vol 26 (12) ◽  
pp. 1119-1126
Author(s):  
Yu. N. Nemish ◽  
I. Yu. Khoma ◽  
D. I. Chernopiskii ◽  
E. I. Krizhanovskii

1977 ◽  
Vol 13 (9) ◽  
pp. 945-946 ◽  
Author(s):  
A. A. Bondarenko ◽  
A. I. Telalov

Author(s):  
S. Harutyunyan ◽  
D. J. Hasanyan ◽  
R. B. Davis

Formulation is derived for buckling of the circular cylindrical shell with multiple orthotropic layers and eccentric stiffeners acting under axial compression, lateral pressure, and/or combinations thereof, based on Sanders-Koiter theory. Buckling loads of circular cylindrical laminated composite shells are obtained using Sanders-Koiter, Love, and Donnell shell theories. These theories are compared for the variations in the stiffened cylindrical shells. To further demonstrate the shell theories for buckling load, the following particular case has been discussed: Cross-Ply with N odd (symmetric) laminated orthotropic layers. For certain cases the analytical buckling loads formula is derived for the stiffened isotropic cylindrical shell, when the ratio of the principal lamina stiffness is F = E2/E1 = 1. Due to the variations in geometrical and physical parameters in theory, meaningful general results are complicated to present. Accordingly, specific numerical examples are given to illustrate application of the proposed theory and derived analytical formulas for the buckling loads. The results derived herein are then compared to similar published work.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mohammad Zamani Nejad ◽  
Mehdi Jabbari ◽  
Mehdi Ghannad

Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided intondisks,nsets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.


Sign in / Sign up

Export Citation Format

Share Document