Volume 8: Mechanics of Solids, Structures and Fluids
Latest Publications


TOTAL DOCUMENTS

101
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791845240

Author(s):  
Kristin Holzworth ◽  
Gregory Williams ◽  
Bedri Arman ◽  
Zhibin Guan ◽  
Gaurav Arya ◽  
...  

The basis of this research is to mitigate shock through material design. In this work, we seek to develop an understanding of parametric variations in polyurea-based nano-composite materials through experimental characterization and computational modeling. Blast-mitigating applications often utilize polyurea due to its excellent thermo-mechanical properties. Polyurea is a microphase-separated segmented block copolymer formed by the rapid reaction of an isocyanate component and an amine component. Block copolymers exhibit unique properties as a result of their phase-separated morphology, which restricts dissimilar block components to microscopic length scales. The soft segments form a continuous matrix reinforced by the hard segments that are randomly dispersed as microdomains. The physical properties of the separate phases influence the overall properties of the polyurea. While polyurea offers a useful starting point, control over crystallite size and morphology is limited. For compositing, the blending approach allows superb control of particle size, shape, and density; however, the hard/soft interface is typically weak for simple blends. Here, we overcome this issue by developing hybrid polymer grafted nanoparticles, which have adjustable exposed functionality to control both their spatial distribution and interface. These nano-particles have tethered polymer chains that can interact with their surrounding environment and provide a method to control well defined and enhanced nano-composites. This approach allows us to adjust a number of variables related to the hybrid polymer grafted nanoparticles including: core size and shape, core material, polymer chain length, polymer chain density, and monomer type. In this work, we embark on a parametric study focusing on the effect of silica nanoparticle size, polymer chain length, and polymer chain density. Preliminary results from experimental characterization and computational modeling indicate that the dynamic mechanical properties of the material can be significantly altered through such parametric modifications. These efforts are part of an ongoing initiative to develop elastomeric composites with optimally designed compositions and characteristics to manage blast-induced stress-wave energy.


Author(s):  
George Okeke ◽  
Robert B. Hammond ◽  
S. Joseph Antony

Nanoparticles are nanometer sized metallic oxides which possess enhanced properties that are desirable to a wide range of industries. In this study, we investigate structural and surface properties of anatase TiO2 nanoparticles in vacuum and water environments using molecular dynamics simulations. The particle sizes ranged from 2 to 6 nm and simulations were performed at 300 K. Surface energy of the particles in vacuum was seen to be higher than that of the particles in water by about 100% for the smaller particles (i.e. 2 and 3nm) and about 60% for the larger particles (i.e. 4 to 6 nm). Surface energy of the particles in both environments, is seen to increase to a maximum (optimum value) as the particle size increases after which no further significant increase is observed. In vacuum, studies carried out at temperatures ranging from 300–2500 K showed a high dependence of surface energy on temperature. The estimated surface tension of water is seen to agree quite well with that of experiments.


Author(s):  
Ersin Sayar ◽  
Bakhtier Farouk

Coupled structural and fluid flow analysis of a piezoelectric valveless micropump is carried out for liquid transport applications. The valveless micropump consists of trapezoidal prism inlet/outlet elements; the pump chamber, a thin structural layer (Pyrex glass) and a piezoelectric element (PZT-5A), as the actuator. Two-way coupling of forces and displacements between the solid and the liquid domains in the systems are considered where actuator deflection and motion causes fluid flow and vice-versa. Flow contraction and expansion (through the trapezoidal prism inlet and outlet respectively) generates net fluid flow. The pressure, velocity, flow rate and pump membrane deflections of the micropump are investigated for six different working fluids (acetone, methanol, ethanol, water, and two hypothetical fluids). For the compressible flow formulation, an isothermal equation of state for the working fluid is employed. Three-dimensional governing equations for the flow fields and the structural-piezoelectric bi-layer membrane motions are considered. Comparison of the pumping characteristics of the micropumps operating with different working fluids can be utilized to optimize the design of MEMS based micropumps in drug delivery and biomedical applications.


Author(s):  
Gustavo M. Castelluccio ◽  
David L. McDowell

The formation and early growth of fatigue cracks in the high cycle fatigue regime is influenced by microstructuctural features such as grain size and morphological and crystallographic texture. However, most fatigue models do not predict the influence of the microstructure on early stages of crack formation, or they employ parameters that should be calibrated with experimental data from specimens with microstructures of interest. These post facto strategies are adequate to characterize materials, but they are not fully appropriate to aid in the design of fatigue-resistant engineering alloys. This paper presents a modeling framework that facilitates relative assessment of fatigue resistance among different microstructures. The scheme employs finite element simulations that explicitly render the microstructure and a methodology that estimates transgranular fatigue growth for microstructurally small cracks on a grain-by-grain basis, including consideration of growth within grains (embedded analytically) and stress redistribution as the cracks extend. The methodology is implemented using a crystal plasticity algorithm in ABAQUS and calibrated to study fatigue crack initiation of a bimodal grain size distribution found in RR1000 powder processed Ni-base superalloys for turbine disk applications.


Author(s):  
Jaskirat S. Sodhi ◽  
Swapnil Moon ◽  
I. Joga Rao

Light Activated Shape Memory Polymers (LASMP) are recently developed innovative materials defined by their capacity to store a deformed (temporary) shape and recover an original (parent) shape. This change in shape and the return to original shape is achieved by exposing the polymer to light at different wavelengths. These unique properties have led to the use of LASMP’s in a wide variety of applications. These SMP’s have a great potential in the biomedical industry as well as the aerospace industry. In the past, the authors have introduced a constitutive model to model the mechanics of these LASMP [1] and used it to solve a few cases of boundary value problems of interest. In this paper, the developed model is used to solve some other inhomogeneous deformation boundary value problems.


Author(s):  
S. Harutyunyan ◽  
D. J. Hasanyan ◽  
R. B. Davis

Formulation is derived for buckling of the circular cylindrical shell with multiple orthotropic layers and eccentric stiffeners acting under axial compression, lateral pressure, and/or combinations thereof, based on Sanders-Koiter theory. Buckling loads of circular cylindrical laminated composite shells are obtained using Sanders-Koiter, Love, and Donnell shell theories. These theories are compared for the variations in the stiffened cylindrical shells. To further demonstrate the shell theories for buckling load, the following particular case has been discussed: Cross-Ply with N odd (symmetric) laminated orthotropic layers. For certain cases the analytical buckling loads formula is derived for the stiffened isotropic cylindrical shell, when the ratio of the principal lamina stiffness is F = E2/E1 = 1. Due to the variations in geometrical and physical parameters in theory, meaningful general results are complicated to present. Accordingly, specific numerical examples are given to illustrate application of the proposed theory and derived analytical formulas for the buckling loads. The results derived herein are then compared to similar published work.


Author(s):  
Kasra Momeni

A multiscale approach is pursued for modeling the size-scale effect on generated electric potential by nanocomposite electrical generators of ZnO nanowires. A core-surface model is used for capturing the effect of size-scale on elastic modulus of ZnO NWs. In this model, a surface with different elastic modulus as of the core of NW was considered. Using linear elasticity and axisymmetric configuration of this problem, closed form governing equations are derived in cylindrical coordinate system. Parametric studied are performed for sample cases to demonstrate application of the developed model. It is shown that ZnO nanowires with larger aspect ratio and smaller diameters have higher performance and can produce higher electric potential.


Author(s):  
Yousof Azizi ◽  
Patricia Davies ◽  
Anil K. Bajaj

Flexible polyethylene foam, which is used in many engineering applications, exhibits nonlinear and viscoelastic behavior. To date, several models have been proposed to characterize the complex behavior of foams from the computationally intensive microstructural models to continuum models that capture the macroscale behavior of the foam materials. A nonlinear viscoelastic model, which is an extension of previously developed models, is proposed and its ability to capture foam response in uniaxial compression is investigated. It is assumed in the model that total stress is decomposed into the sum of a nonlinear elastic component, which is modeled by a higher order polynomial, and a nonlinear hereditary type viscoelastic component. System identification procedures are developed to estimate the model parameters using uniaxial compression data from experiments conducted at different rates. The performance of this model is compared to that of other nonlinear viscoelastic models.


Author(s):  
John Carrell ◽  
Hong-Chao Zhang ◽  
Kevin Long ◽  
Senay Imam

Diaplex MS5520, SMP Technologies, Inc. transition temperature 55°C, was filled with varying proportions (5 wt.%, 15.00 wt.%, and 25 wt.%) of magnetite nanoparticles, NanoArc and Iron(III) Oxide; 20–40 nm APS Powder from Alfa Aesar. The SMP nanocomposite was tested by thermomechanical methods, derived thermo-magnetic-mechanical methods, and shape memory methods. The results of such methods show an ability of the SMP nanocomposite to be controlled in shape deformation and recovery with an applied thermal then applied magnetic field. This paper focuses on the thermal field needed to help trigger the SMP nanocomposite. The objective of the study is to investigate the heat transfer characteristics of a SMP filled with magnetite nanoparitcles. A transient heat equation model is developed, and numerical simulation is performed in Sundance to show the underlying state of thermal change in recovery and deformation process. Result of the simulations roughly match those observed in the experiment.


Author(s):  
Rajesh P. Nair ◽  
C. Lakshmana Rao

Discrete Element Method (DEM) is an explicit numerical scheme to model the mechanical response of solid and particulate media. In our paper, we are introducing Quadrilateral Discrete Element Method (QDEM) for the simulation of the separation of elements in fixed beam subjected to impact load. QDEM results are compared with other DEM results available in literature. Impact loads include two cases: (a) a half sine wave and (b) a penetrator hitting the fixed beam. Separation criteria used for the discrete elements is maximum principal stress failure criteria. In QDEM, convergence study for the response of fixed beam is obtained using MATLAB platform. Validation of quadrilateral elements in fixed beam is being carried out by comparing the results with empirical formula available in literature for the impact analysis.


Sign in / Sign up

Export Citation Format

Share Document