Blood Flow After Peripheral Arterial Reconstruction:V. Effect of Body Position on Leg Blood Flow at Rest and during Exercise

1970 ◽  
Vol 4 (2) ◽  
pp. 173-177 ◽  
Author(s):  
Ruben Cronestrand
2001 ◽  
Vol 33 (5) ◽  
pp. S201
Author(s):  
A Miura ◽  
B J. Lutjemeier ◽  
B W. Scheuerman ◽  
S Koga ◽  
T J. Barstow

2018 ◽  
Vol 315 (5) ◽  
pp. H1425-H1433 ◽  
Author(s):  
Annelise L. Meneses ◽  
Michael C. Y. Nam ◽  
Tom G. Bailey ◽  
Rebecca Magee ◽  
Jonathan Golledge ◽  
...  

Peripheral arterial disease (PAD) is characterized by stenosis and occlusion of the lower limb arteries. Although leg blood flow is limited in PAD, it remains unclear whether skeletal muscle microvascular perfusion is affected. We compared whole leg blood flow and calf muscle microvascular perfusion after cuff occlusion and submaximal leg exercise between patients with PAD ( n = 12, 69 ± 9 yr) and healthy age-matched control participants ( n = 12, 68 ± 7 yr). Microvascular blood flow (microvascular volume × flow velocity) of the medial gastrocnemius muscle was measured before and immediately after the following: 1) 5 min of thigh-cuff occlusion, and 2) a 5-min bout of intermittent isometric plantar-flexion exercise (400 N) using real-time contrast-enhanced ultrasound. Whole leg blood flow was measured after thigh-cuff occlusion and during submaximal plantar-flexion exercise using strain-gauge plethysmography. Postocclusion whole leg blood flow and calf muscle microvascular perfusion were lower in patients with PAD than control participants, and these parameters were strongly correlated ( r = 0.84, P < 0.01). During submaximal exercise, total whole leg blood flow and vascular conductance were not different between groups. There were also no group differences in postexercise calf muscle microvascular perfusion, although microvascular blood volume was higher in patients with PAD than control participants (12.41 ± 6.98 vs. 6.34 ± 4.98 arbitrary units, P = 0.03). This study demonstrates that the impaired muscle perfusion of patients with PAD during postocclusion hyperemia is strongly correlated with disease severity and is likely mainly determined by the limited conduit artery flow. In response to submaximal leg exercise, microvascular flow volume was elevated in patients with PAD, which may reflect a compensatory mechanism to maintain muscle perfusion and oxygen delivery during recovery from exercise. NEW & NOTEWORTHY This study suggests that peripheral arterial disease (PAD) has different effects on the microvascular perfusion responses to cuff occlusion and submaximal leg exercise. Patients with PAD have impaired microvascular perfusion after cuff occlusion, similar to that previously reported after maximal exercise. In response to submaximal exercise, however, the microvascular flow volume response was elevated in patients with PAD compared with control. This finding may reflect a compensatory mechanism to maintain perfusion and oxygen delivery during recovery from exercise.


Diabetes ◽  
1995 ◽  
Vol 44 (2) ◽  
pp. 221-226 ◽  
Author(s):  
F. Dela ◽  
J. J. Larsen ◽  
K. J. Mikines ◽  
H. Galbo
Keyword(s):  

Vascular ◽  
2020 ◽  
pp. 170853812093893
Author(s):  
Kazuhiro Tsunekawa ◽  
Fumio Nagai ◽  
Tamon Kato ◽  
Ikkei Takashimizu ◽  
Daisuke Yanagisawa ◽  
...  

Objectives Laser speckle flowgraphy is a technology using reflected scattered light for visualization of blood distribution, which can be used to measure relative velocity of blood flow easily without contact with the skin within a short time. It was hypothesized that laser speckle flowgraphy may be able to identify foot ischemia. This study was performed to determine whether laser speckle flowgraphy could distinguish between subjects with and without peripheral arterial disease. Materials and methods All subjects were classified based on clinical observations using the Rutherford classification: non-peripheral arterial disease, class 0; peripheral arterial disease group, class 2–5. Rutherford class 6 was one of the exclusion criteria. Laser speckle flowgraphy measured the beat strength of skin perfusion as an indicator of average dynamic cutaneous blood flow change synchronized with the heartbeat. The beat strength of skin perfusion indicates the strength of the heartbeat on the skin, and the heartbeat strength calculator in laser speckle flowgraphy uses the blood flow data to perform a Fourier transform to convert the temporal changes in blood flow to a power spectrum. A total of 33 subjects with peripheral arterial disease and 40 subjects without peripheral arterial disease at a single center were prospectively examined. Laser speckle flowgraphy was used to measure hallucal and thenar cutaneous blood flow, and the measurements were repeated three times. The hallucal and thenar index was defined as the ratio of beat strength of skin perfusion value on hallux/beat strength of skin perfusion value on ipsilateral thenar eminence. The Mann–Whitney U-test was used to compare the median values of hallucal and thenar index and ankle brachial index between the two groups. A receiver operating characteristic curve for hallucal and thenar index of beat strength of skin perfusion was plotted, and a cutoff point was set. The correlation between hallucal and thenar index of beat strength of skin perfusion and ankle brachial index was explored in all subjects, the hemodialysis group, and the non-hemodialysis (non-hemodialysis) group. Results The median value of the hallucal and thenar index of beat strength of skin perfusion was significantly different between subjects with and without peripheral arterial disease (0.27 vs. 0.87, respectively; P <  0.001). The median value of ankle brachial index was significantly different between subjects with and without peripheral arterial disease (0.8 vs. 1.1, respectively; P <  0.001). Based on the receiver operating characteristic of hallucal and thenar index, the cutoff was 0.4416 and the sensitivity, specificity, positive predictive value, and negative predictive value were 68.7%, 95%, 91.7%, and 77.6%, respectively. The correlation coefficients of all subjects, the hemodialysis group, and the non-hemodialysis group were 0.486, 0.102, and 0.743, respectively. Conclusions Laser speckle flowgraphy is a noninvasive, rapid, and widely applicable method. Laser speckle flowgraphy using hallucal and thenar index would be helpful to determine the differences between subjects with and without peripheral arterial disease. The correlation between hallucal and thenar index of beat strength of skin perfusion and ankle brachial index indicated that this index was especially useful in the non-hemodialysis group.


1990 ◽  
Vol 69 (4) ◽  
pp. 1353-1359 ◽  
Author(s):  
H. T. Yang ◽  
R. F. Dinn ◽  
R. L. Terjung

This study investigated the effect of physical training on muscle blood flow (BF) in rats with peripheral arterial insufficiency during treadmill running. Bilateral stenosis of the femoral artery of adult rats (300-350 g) was performed to reduce exercise hyperemia in the hindlimb but not limit resting muscle BF. Rats were divided into normal sedentary, acute stenosed (stenosed 3 days before the experiment), stenosed sedentary (limited to cage activity), and stenosed trained (run on a treadmill by a progressively intense program, up to 50-60 min/day, 5 days/wk for 6-8 wk). Hindlimb BF was determined with 85Sr- and 141Ce-labeled microspheres at a low (20 m/min) and high treadmill speed (30-40 m/min depending on ability). Maximal hindlimb BF was reduced to approximately 50% normal in the acute stenosed group. Total hindlimb BF (81 +/- 5 ml.min-1.100 g-1) did not change in stenosed sedentary animals with 6-8 wk of cage activity, but a redistribution of BF occurred within the hindlimb. Two factors contributed to a higher BF to the distal limb muscle of the trained animals. A redistribution BF within the hindlimb occurred in stenosed trained animals; distal limb BF increased to approximately 80% (P less than 0.001) of the proximal tissue. In addition, an increase in total hindlimb BF with training indicates that collateral BF has been enhanced (P less than 0.025). The associated increase in oxygen delivery to the relatively ischemic muscle probably contributed to the markedly improved exercise tolerance evident in the trained animals.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Takeo Ishii ◽  
Shizuka Takabe ◽  
Yuki Yanagawa ◽  
Yuko Ohshima ◽  
Yasuhiro Kagawa ◽  
...  

Abstract Background A simpler method for detecting atherosclerosis obliterans is required in the clinical setting. Laser Doppler flowmetry (LDF) is easy to perform and can accurately detect deterioration in skin perfusion. We performed LDF for hemodialysis patients to determine the correlations between blood flow in the lower limbs and peripheral arterial disease (PAD). Methods This retrospective study included 128 hemodialysis patients. Patients were categorized into the non-PAD group (n = 106) and PAD group (n = 22), 14 early stage PAD patients were included in the PAD group. We conducted LDF for the plantar area and dorsal area of the foot and examined skin perfusion pressure (SPP) during dialysis. Results SPP-Dorsal Area values were 82.1 ± 22.0 mmHg in the non-PAD, and 59.1 ± 20.3 mmHg in PAD group, respectively (p < 0.05). The LDF-Plantar blood flow (Qb) values were 32.7 ± 15.5 mL/min in non-PAD group and 21.5 ± 11.3 mL/min in PAD group (p < 0.001). A total of 21 non-PAD patients underwent LDF before and during dialysis. The LDF-Plantar-Qb values were 36.5 ± 17.6 mL/min before dialysis and 29.6 ± 17.7 mL/min after dialysis (p < 0.05). We adjusted SPP and LDF for PAD using logistic regression, SPP-Dorsal-Area and LDF-P were significantly correlated with PAD (p < 0.05). The receiver-operating characteristic curve analysis indicated cut-off values of 20.0 mL/min for LDF-Plantar-Qb during dialysis. Conclusion LDF is a simple technique for sensitive detection of early-stage PAD. This assessment will help physicians identify early-stage PAD, including Fontaine stage II in clinical practice, thereby allowing prompt treatment.


2012 ◽  
Vol 112 (9) ◽  
pp. 1556-1563 ◽  
Author(s):  
Bruno T. Roseguini ◽  
Arturo A. Arce-Esquivel ◽  
Sean C. Newcomer ◽  
Hsiao T. Yang ◽  
Ronald Terjung ◽  
...  

Despite the escalating prevalence in the aging population, few therapeutic options exist to treat patients with peripheral arterial disease. Application of intermittent pneumatic leg compressions (IPC) is regarded as a promising noninvasive approach to treat this condition, but the clinical efficacy, as well the mechanistic basis of action of this therapy, remain poorly defined. We tested the hypothesis that 2 wk of daily application of IPC enhances exercise tolerance by improving blood flow and promoting angiogenesis in skeletal muscle in a model of peripheral arterial insufficiency. Male Sprague-Dawley rats were subjected to bilateral ligation of the femoral artery and randomly allocated to treatment or sham groups. Animals were anesthetized daily and exposed to 1-h sessions of bilateral IPC or sham treatment for 14–16 consecutive days. A third group of nonligated rats was also studied. Marked increases in treadmill exercise tolerance (∼33%, P < 0.05) and improved muscle performance in situ (∼10%, P < 0.05) were observed in IPC-treated animals. Compared with sham-treated controls, blood flow measured with isotope-labeled microspheres during in situ contractions tended to be higher in IPC-treated animals in muscles composed of predominantly fast-twitch white fibers, such as the plantaris (∼93%, P = 0.02). Capillary contacts per fiber and citrate synthase activity were not significantly altered by IPC treatment. Collectively, these data indicate that IPC improves exercise tolerance in a model of peripheral arterial insufficiency in part by enhancing blood flow to collateral-dependent tissues.


Sign in / Sign up

Export Citation Format

Share Document