cage activity
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 9)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 15 ◽  
Author(s):  
Laura C. E. Steel ◽  
Selma Tir ◽  
Shu K. E. Tam ◽  
James N. Bussell ◽  
Manuel Spitschan ◽  
...  

Light is known to exert powerful effects on behavior and physiology, including upon the amount and distribution of activity across the day/night cycle. Here we use home cage activity monitoring to measure the effect of differences in home cage light spectrum and intensity on key circadian activity parameters in mice. Due to the relative positioning of any individually ventilated cage (IVC) with regard to the animal facility lighting, notable differences in light intensity occur across the IVC rack. Although all mice were found to be entrained, significant differences in the timing of activity onset and differences in activity levels were found between mice housed in standard versus red filtering cages. Furthermore, by calculating the effective irradiance based upon the known mouse photopigments, a significant relationship between light intensity and key circadian parameters are shown. Perhaps unsurprisingly given the important role of the circadian photopigment melanopsin in circadian entrainment, melanopic illuminance is shown to correlate more strongly with key circadian activity parameters than photopic lux. Collectively, our results suggest that differences in light intensity may reflect an uncharacterized source of variation in laboratory rodent research, with potential consequences for reproducibility. Room design and layout vary within and between facilities, and caging design and lighting location relative to cage position can be highly variable. We suggest that cage position should be factored into experimental design, and wherever possible, experimental lighting conditions should be characterized as a way of accounting for this source of variation.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A232-A232
Author(s):  
Ruben Rodriguez ◽  
Candice B Herber ◽  
William C Krause ◽  
Holly A Ingraham

Abstract Loss of peripheral estrogen in postmenopausal women is often associated with decreased physical activity and loss of bone mass, leading to an increased risk of metabolic diseases, osteoporosis, and skeletal fragility. While it is well-established that loss of peripheral estrogen signaling results in bone loss, we previously found that eliminating central estrogen signaling paradoxically results in an unexpected massive increase in bone mass only in female mice. Specifically, deletion of estrogen receptor alpha (ERα) signaling in kisspeptin 1 (Kiss1) expressing neurons of the arcuate nucleus (ARCKiss1) increases bone mass at the expense of reproduction in female mice. Currently, the mechanisms and the neurocircuits that modulate these unexpected responses are unknown. Here, to begin addressing these questions, we asked if changing the neuronal output of ARCKiss1 neurons using chemogenetic manipulation of ARCKiss1 neurons might also alter bone mass and locomotion in female mice. To do this, we delivered stimulatory (AAV2-hM3Dq-mCherry) designer receptors exclusively activated by designer drugs (DREADDs) to the ARC of wild type and Kiss1-Cre+ (Kiss1-CrehM3q-DREADDs) female mice and asked if chronic activation of ARCKiss1 neurons might alter bone mass as analyzed by standard ex-vivo µCT imaging. Clozapine N-oxide (CNO) was delivered for 22 days (0.1 mg/mL). We also leveraged the ANY-Maze system to assess home cage activity over an extensive 96-hour period. Acute activation of ARCKiss1 tended to decrease home cage activity by nearly 40% in Kiss1-CrehM3q-DREADDs mice during the dark period compared to WT females. Interestingly, chronic activation of ARCKiss1 neurons significantly lowered trabecular bone volume by nearly 30%. Current studies are underway to ask if inhibiting ARCKiss1 neurons results in increased bone mass. Our findings collectively suggest that the neuronal activity of ARCKiss1 neurons is sufficient to shift energy allocation away from locomotion and bone-building to maximize reproductive capacity. We speculate that the widely used SERM in breast cancer treatment, Tamoxifen, might exert its bone sparing effect by silencing ARCKiss1 neurons.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karin Pernold ◽  
Eric Rullman ◽  
Brun Ulfhake

AbstractThe mouse is the most important mammalian model in life science research and the behavior of the mouse is a key read-out of experimental interventions and genetic manipulations. To serve this purpose a solid understanding of the mouse normal behavior is a prerequisite. Using 14–19 months of cumulative 24/7 home-cage activity recorded with a non-intrusive technique, evidence is here provided for a highly significant circannual oscillation in spontaneous activity (1–2 SD of the mean, on average 65% higher during peak of highs than lows; P = 7E−50) of male and female C57BL/6 mice held under constant conditions. The periodicity of this hitherto not recognized oscillation is in the range of 2–4 months (average estimate was 97 days across cohorts of cages). It off-sets responses to environmental stimuli and co-varies with the feeding behavior but does not significantly alter the preference for being active during the dark hours. The absence of coordination of this rhythmicity between cages with mice or seasons of the year suggest that the oscillation of physical activity is generated by a free-running intrinsic oscillator devoid of external timer. Due to the magnitude of this rhythmic variation it may be a serious confounder in experiments on mice if left unrecognized.


2020 ◽  
Author(s):  
K. Pernold ◽  
E. Rullman ◽  
B. Ulfhake

AbstractUsing 14-20 months of cumulative 24/7 home-cage activity recorded with a non-intrusive technique and a data driven analytical approach, we here provide evidence for the existence of a circannual oscillation (1-2 SD of the mean, on average 65% higher during peak of highs than lows; P=7E-50) in spontaneous activity of male and female C57BL/6 mice held under constant barrier conditions (dark-light cycle 12/12 h (DL), temperature 21±1°C, humidity 40-60%). The periodicity of the season-like oscillation is in the range of 2-4 months (on average 97 days across cohorts of cages) and off-sets also responses to environmental stimuli but does not significantly alter the preference for activity during the dark hours of this nocturnal mouse strain (P=0.11 difference between highs and lows).The significance of this hitherto not recognized slow rhythmic alteration in spontaneous activity is further substantiated by its co-variation with the feeding behaviour of the mice. The absence of coordination within and between cohorts of cages or synchronization to the seasons of the year, suggests that the oscillation of in-cage activity and behavioural responses is generated by a free-running intrinsic oscillator devoid of synchronization with an out-of-cage environmental time-keeper. Since the variation over time has such a magnitude and correlate with the feeding behaviour it is likely that it will impact a range of long term experiments conducted on laboratory mice if left unrecognized.


2018 ◽  
Author(s):  
David R. Schulze ◽  
Lance McMahon

Cannabis withdrawal upon discontinuation of long-term, heavy Cannabis use is reported in humans; however, methods to establish the nature and intensity of cannabinoid withdrawal, especially directly observable signs, have not been widely established. This study quantified activity in the home cage of rhesus monkeys, and examined the extent to which activity can be used to quantify tolerance to and dependence on Δ9-tetrahydrocannabinol (Δ9-THC). Home-cage activity was measured in one group that received Δ9-THC (1 mg/kg s.c.) every 12 h (i.e., chronic Δ9-THC), and a second group that received Δ9-THC (0.1 mg/kg i.v.) once every 3 days (i.e., intermittent Δ9-THC). Treatment was temporarily discontinued in the chronic Δ9-THC group and the effects of rimonabant and Δ9-THC were examined in both groups. Activity counts were highest during the day (lights on 0600-2000 h) and were lower at night. Rimonabant (0.1-3.2 mg/kg i.v.) dose-dependently increased activity (maximum 20-fold) in the chronic Δ9-THC group, but did not significantly alter activity in the intermittent Δ9-THC group. Δ9-THC (0.32-3.2 mg/kg i.v.) dose-dependently decreased activity counts (maximum 4-fold) in both groups, but was somewhat more potent in the intermittent as compared with the Δ9-THC group. Discontinuation of Δ9-THC treatment resulted in an immediate (i.e., within 24 h) and time-related increase in activity. Resumption of Δ9-THC treatment (1 mg/kg/12 h) produced hypoactivity that was no longer evident within 9 days of treatment. The time-related increase in home-cage activity upon abrupt discontinuation of chronic Δ9-THC treatment, as well as the effects of rimonabant to increase activity in monkeys receiving chronic, but not intermittent, Δ9-THC treatment, are consistent with signs of physical dependence on Δ9-THC in primates.


Sign in / Sign up

Export Citation Format

Share Document