In vitro screening methods for developmental toxicology

Author(s):  
Robert G. Ellis-Hutchings ◽  
Esther de Jong ◽  
Aldert H. Piersma ◽  
Edward W. Carney
2018 ◽  
Vol 264 ◽  
pp. 471-475 ◽  
Author(s):  
Daniel Granato ◽  
Fereidoon Shahidi ◽  
Ronald Wrolstad ◽  
Paul Kilmartin ◽  
Laurence D. Melton ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 506b-506
Author(s):  
Carol D. Robacker ◽  
S.K. Braman

Azalea lace bug (Stephanitis pyrioides) is the most serious pest on azalea. Results of laboratory bioassays and field evaluations of 17 deciduous azalea taxa have identified three resistant taxa: R. canescens, R. periclymenoides, and R. prunifolium. Highly susceptible taxa are `Buttercup', `My Mary', R. oblongifolium, and the evergreen cultivar `Delaware Valley White'. To determine whether in vitro techniques would have potential value in screening or selecting for resistance, or for the identification of morphological or chemical factors related to resistance, an in-vitro screening assay was developed. In-vitro shoot proliferation was obtained using the medium and procedures of Economou and Read (1984). Shoots used in the bioassays were grown in culture tubes. Two assays were developed: one for nymphs and one for adult lace bugs. To assay for resistance to nymphs, `Delaware Valley White' leaves containing lace bug eggs were disinfested with 70% alcohol and 20% commercial bleach, and incubated in sterile petri plates with moistened filter paper until the nymphs hatched. Five nymphs were placed in each culture tube, and cultures were incubated for about 2 weeks, or until adults were observed. To assay for resistance to adults, five female lace bugs were placed in each culture tube and allowed to feed for 5 days. Data collected on survival and leaf damage was generally supportive of laboratory bioassays and field results. Adult lace bugs had a low rate of survival on resistant taxa. Survival of nymphs was somewhat reduced on resistant taxa.


2019 ◽  
Vol 15 (1) ◽  
pp. 63-70
Author(s):  
Shiv Dev Singh ◽  
Arvind Kumar ◽  
Firoz Babar ◽  
Neetu Sachan ◽  
Arun Kumar Sharma

Background: Thienopyrimidines are the bioisoster of quinazoline and unlike quinazoline exist in three isomeric forms corresponding to the three possible types annulation of thiophene to the pyrimidine ring viz thieno[2,3-d] pyrimidine, thieno[3,2-d] pyrimidine and thieno[3,4-d]pyrimidine. Heterocyclic containing the thienopyrimidinone moiety exhibits various pronounced activities such as anti-hypertensive, analgesic and anti-inflammatory, antiviral, platelet aggregation inhibitory, antiprotozoal bronchodilatory, phosphodiesterase inhibitory, antihistaminic, antipsychotic and antimicrobial activity. Objective: Synthesis of novel 3(N,N-dialkylamino)alkyl/phenyl substituted thieno[2,3-d]pyrimidinones as H1-anti-histaminic and antimicrobial agents. Methods: A series of 3-[(N,N-dialkylamino)alkyl/phenyl]-2-(1H)thioxo-5,6,7,8-tetrahydrobenzo(b) thieno(2,3-d)pyrimidine-4(3H)-ones[4a-d], their oxo analogous [5a-d] and 3-[(N,N-dialkylamino)alkyl]- 2-chlorophenyl-5,6,7,8-tetrahydrobenzo(b)thieno(2,3-d)pyrimidine- 4 (3H)-ones[6a-d]derivative were synthesized from 2-amino-4,5,6,7-tetrahydrobenzo(b)thiophene-3-carboxylic acid by nucleophilic substitution of different N,N-dialkyl alkylene/phenylene diamines on activated 3-acylchloride moiety followed by cyclocondensation with carbon disulfide and ethanolic potassium hydroxide to get [4a-d] and in second reaction by condensation with 4-chlorobenzoyl chloride to get [6a-d] by single pot novel innovative route. The oxo analogous [5a-d] were prepared by treating derivatives [4a-d] with potassium permagnate in ethanolic KOH. The synthesized compound were evaluated for H1-antihistaminic and antimicrobial activities. Results: All synthesized compounds exhibited significant H1-antihistaminic activity by in vitro and in vivo screening methods and data were verified analytically and statistically. The compound 4a, 4b, 5a and 5b showed significant H1-antihistaminiic activity than the reference standard chlorpheniramine maleate. The compound 6d, 6c, 5c and 4c exhibited significant antimicrobial activity.


Sign in / Sign up

Export Citation Format

Share Document