DRSA: a non-hierarchical clustering algorithm using k-NN graph and its application in vegetation classification

2015 ◽  
pp. 125-138 ◽  
Author(s):  
I. V. Goncharenko

In this article we proposed a new method of non-hierarchical cluster analysis using k-nearest-neighbor graph and discussed it with respect to vegetation classification. The method of k-nearest neighbor (k-NN) classification was originally developed in 1951 (Fix, Hodges, 1951). Later a term “k-NN graph” and a few algorithms of k-NN clustering appeared (Cover, Hart, 1967; Brito et al., 1997). In biology k-NN is used in analysis of protein structures and genome sequences. Most of k-NN clustering algorithms build «excessive» graph firstly, so called hypergraph, and then truncate it to subgraphs, just partitioning and coarsening hypergraph. We developed other strategy, the “upward” clustering in forming (assembling consequentially) one cluster after the other. Until today graph-based cluster analysis has not been considered concerning classification of vegetation datasets.

2021 ◽  
Vol 10 (8) ◽  
pp. 548
Author(s):  
Jang-You Park ◽  
Dong-June Ryu ◽  
Kwang-Woo Nam ◽  
Insung Jang ◽  
Minseok Jang ◽  
...  

Density-based clustering algorithms have been the most commonly used algorithms for discovering regions and points of interest in cities using global positioning system (GPS) information in geo-tagged photos. However, users sometimes find more specific areas of interest using real objects captured in pictures. Recent advances in deep learning technology make it possible to recognize these objects in photos. However, since deep learning detection is a very time-consuming task, simply combining deep learning detection with density-based clustering is very costly. In this paper, we propose a novel algorithm supporting deep content and density-based clustering, called deep density-based spatial clustering of applications with noise (DeepDBSCAN). DeepDBSCAN incorporates object detection by deep learning into the density clustering algorithm using the nearest neighbor graph technique. Additionally, this supports a graph-based reduction algorithm that reduces the number of deep detections. We performed experiments with pictures shared by users on Flickr and compared the performance of multiple algorithms to demonstrate the excellence of the proposed algorithm.


2021 ◽  
Vol 25 (6) ◽  
pp. 1453-1471
Author(s):  
Chunhua Tang ◽  
Han Wang ◽  
Zhiwen Wang ◽  
Xiangkun Zeng ◽  
Huaran Yan ◽  
...  

Most density-based clustering algorithms have the problems of difficult parameter setting, high time complexity, poor noise recognition, and weak clustering for datasets with uneven density. To solve these problems, this paper proposes FOP-OPTICS algorithm (Finding of the Ordering Peaks Based on OPTICS), which is a substantial improvement of OPTICS (Ordering Points To Identify the Clustering Structure). The proposed algorithm finds the demarcation point (DP) from the Augmented Cluster-Ordering generated by OPTICS and uses the reachability-distance of DP as the radius of neighborhood eps of its corresponding cluster. It overcomes the weakness of most algorithms in clustering datasets with uneven densities. By computing the distance of the k-nearest neighbor of each point, it reduces the time complexity of OPTICS; by calculating density-mutation points within the clusters, it can efficiently recognize noise. The experimental results show that FOP-OPTICS has the lowest time complexity, and outperforms other algorithms in parameter setting and noise recognition.


2018 ◽  
Vol 74 ◽  
pp. 1-14 ◽  
Author(s):  
Yikun Qin ◽  
Zhu Liang Yu ◽  
Chang-Dong Wang ◽  
Zhenghui Gu ◽  
Yuanqing Li

Author(s):  
Bao Bing-Kun ◽  
Yan Shuicheng

Graph-based learning provides a useful approach for modeling data in image annotation problems. In this chapter, the authors introduce how to construct a region-based graph to annotate large scale multi-label images. It has been well recognized that analysis in semantic region level may greatly improve image annotation performance compared to that in whole image level. However, the region level approach increases the data scale to several orders of magnitude and lays down new challenges to most existing algorithms. To this end, each image is firstly encoded as a Bag-of-Regions based on multiple image segmentations. And then, all image regions are constructed into a large k-nearest-neighbor graph with efficient Locality Sensitive Hashing (LSH) method. At last, a sparse and region-aware image-based graph is fed into the multi-label extension of the Entropic graph regularized semi-supervised learning algorithm (Subramanya & Bilmes, 2009). In combination they naturally yield the capability in handling large-scale dataset. Extensive experiments on NUS-WIDE (260k images) and COREL-5k datasets well validate the effectiveness and efficiency of the framework for region-aware and scalable multi-label propagation.


Sign in / Sign up

Export Citation Format

Share Document