scholarly journals A study on the role of social information sharing leading to range expansion in songbirds with large vocal repertoires: Enhancing our understanding of the Great-tailed Grackle (Quiscalus mexicanus) alarm call

2021 ◽  
Author(s):  
Samantha Bowser ◽  
Maggie MacPherson

The acoustic adaptation hypothesis posits that animal sounds are influenced by the habitat properties that shape acoustic constraints (Ey and Fischer 2009, Morton 2015, Sueur and Farina 2015).Alarm calls are expected to signal important habitat and receiver-dependent information (Ripmeester et al. 2010, Sheldon et al. 2020), and we want to test whether Q. mexicanus alarm calls differ between populations and ecological contexts across the US as expected under the acoustic adaptation hypothesis (three US subspecies: Q. m. nelsoni, Q. m. monsoni, and Q. m. prospidicola; Figure 1). The alarm call vocalization in Q. mexicanus is known to vary in tone, range and pitch (Kok 1971). Alarm calls signal low intensity excitement (Kok 1971) and research in other species has shown that differences in the acoustic qualities of alarm calls reflect the urgency of threats tailored to the receiving audience (Carlson et al. 2020, Sheldon et al. 2020, McLachlan and Magrath 2020). However, due to the ecological importance of alarm calls in minimizing risk to group members, natural selection could promote stabilizing selection on alarm calls, resulting in homogenous alarm call structure across subspecies regardless of habitat and receiver. For this reason, we will also test whether Q. mexicanus songs differ between populations and ecological contexts across the US as natural selection likely promotes disruptive selection on song structure to facilitate subspecies recognition during mating season (Cruz-Yepez et al. 2020, Simpson et al. 2021). In this project we will enhance our understanding of the vocal repertoire of Q. mexicanus, by 1) recording and describing alarm calls and songs, 2) testing a null hypothesis that differing vocalizations will correlate with subspecies-specific soundscapes, and 3) test an alternative hypothesis that vocal signal characteristics correlate with range expansion. We will improve the description of vocalizations by recording vocalizations from each subspecies and analyzing the tone, range and pitch of vocalizations using spectrograms generated with Raven Lite 2.0 (Cornell Lab of Ornithology). Recording of alarm calls will take place during the non-breeding season, and of songs during the breeding season. We will only record alarm calls during the non-breeding period to avoid differences associated with reproduction. For our first objective, a phylogenetic principal component analysis (PPCA) will be conducted to identify correlations among measures of vocalization structure across subspecies while accounting for phylogenetic history. For our second objective, a phylogenetic generalized least squares analysis (PGLS) will be conducted to determine if subspecies vocalization characteristics are explained by social and habitat contexts within a phylogenetic context. To test whether vocalizations have functionally diverged and to help explain differences in range expansion, we will conduct a reciprocal playback experiment measuring responsiveness to recordings from within each subspecies compared to those from other subspecies. We will use the results of the PPCA and playback experiment to test whether vocal signal characteristics (both signal and response) are significant regional drivers of predicted distributions for Q. mexicanus in the US using an ensemble distribution model. If vocal signal skill is learned from context-dependent experiences unique to each subspecies (i.e., in line with the acoustic adaptation hypothesis), then individuals should share vocal characteristics with and respond to the signals of their own subspecies but not to signals of other subspecies. Tone, range, and pitch of vocalizations as well as low responsiveness will be a significant explanatory variable in all regional models (i.e., differences in vocal signals will distinguish subspecies distributions). However, if differences in regional models are due to variation in responsiveness according to subspecies, then skill in vocal communication could contribute to differences in range expansion among subspecies....

2021 ◽  
Author(s):  
◽  
Joseph Fawzi Azar

<p><b>This thesis takes a community approach to investigate the acoustics of forest birds in Zealandia sanctuary, Wellington. Initially, the annual changes in vocalisation output of 16 study species and their possible effect on bird conspicuousness were described. Environmental factors that may shape these avian vocalisations were addressed though invoking two key hypotheses, the acoustic adaptation hypothesis, and the acoustic niche hypothesis. In addition, the songs of selected species are investigated: the role of song harmonics in the native North Island saddleback, Philesturnus rufusater, and their role in ranging, change in song dialect through time and space in the introduced song thrush, Turdus philomelos, and temporal change in the song of the native grey warbler, Greygone igata. Vocal activity of the study species varied seasonally, affecting their detectability in bird counts. Some species were mostly first heard rather than seen and viceversa. The results lend support to the acoustic niche hypothesis in that vocalisations within the forest bird community appear to have evolved towards divergence, with native species’ vocalisations being more dispersed within the community acoustic space than those of the introduced species. However, all species concentrated their energy within relatively narrow frequency bands, supporting the predictions of the acoustic adaptation hypothesis. Adaptation to different transmission properties associated with different singing elevations or physiological parameters such as body weight may have an effect on shaping such bird vocalisations.</b></p> <p>Forests provide a complex acoustic space for sound transmission and a “sound window” may not be a constant property of a given forest. The study revealed that a prominent sound window persists in the lower frequency range that is less affected by habitat. Some high frequencies may have similar average attenuation values to those of low frequency, however, with greater fluctuation in attenuation. Ground effect is a further factor in determining how well different frequency ranges transmit and birds may use acoustic characteristics of their habitat to enhance their signal.</p> <p>Harmonics in North Island saddleback chatter song were found to play a potential role in ranging (estimating the distance of signaller), for playback songs with more relative energy within higher harmonics were evidently perceived as coming from a nearby individual.</p> <p>The repertoire size of the song thrush population studied in Zealandia has apparently evolved to become larger and more varied than the source population of song thrushes in the UK, with more syllables delivered with less repetition than the UK song recordings examined.</p> <p>Over a period of 7 years, syllables in grey warbler song have shifted to a higher frequency, but there was no difference in the temporal structure of the song. Habitat effect, competition on the acoustic signal from reintroduced birds and ambient noise level are considered as possible casual factors.</p>


2017 ◽  
Vol 31 (1) ◽  
pp. 148-158 ◽  
Author(s):  
S. Goutte ◽  
A. Dubois ◽  
S. D. Howard ◽  
R. Márquez ◽  
J. J. L. Rowley ◽  
...  

2015 ◽  
Vol 61 (6) ◽  
pp. 996-1003 ◽  
Author(s):  
Fang Zhang ◽  
Pan Chen ◽  
Zhuqing Chen ◽  
Juan Zhao

Abstract The ultrasonic communication in Concave-eared torrent frogs Odorrana tormota is believed to be an adaptation to avoid masking by the intense low-frequency noise of the rushing stream in their habitat. The acoustic adaptation hypothesis for ultrasonic origin predicts that some organisms subjecting to persistent acoustic interference from broadband, low-frequency environmental noise, might shift their signal frequency upward into frequency bands with lower noise energy. In other words, low-frequency environmental noise might cause upward shifts of species’ vocalization frequencies making their signals more conspicuous. Presently, it is unclear whether male O. tormota adjust their signal features in response to a change in the ambient noise level. We tested the prediction of the acoustic adaptation hypothesis by recording the vocalizations of male O. tormota inhabiting two streams with different background noise levels in Huangshan in central China and comparing their call features including the fundamental frequency (F0). Results showed that the spectrotemporal characteristics of the vocal signals of males in the two habitats were indifferent, except the duration of the call harmonic segments and three parameters related to the call fundamental frequency (F0). In terms of the F0, the pooled and individual frog data showed that frogs inhabiting the noisier habitat tended to emit calls having higher F0. The higher F0 increases the signal-to-noise ratio, thus benefiting the detection of vocalization. Thus, similar to several anuran species, concave-eared torrent frogs also display noise-dependent adjustment of vocal pitch in their vocalizations for making them more audible.


Sign in / Sign up

Export Citation Format

Share Document