scholarly journals Investigation of Biofuels from Microorganism Metabolism for Use as Anti-Knock Additives

2017 ◽  
Author(s):  
John Hunter Mack ◽  
Vi H. Rapp ◽  
Malte Broeckelmann ◽  
Taek Soon Lee ◽  
Robert W. Dibble

This paper investigates the anti-knock properties of biofuels that can be produced from microorganism metabolic processes. The biofuels are rated using Research Octane Number (RON) and Blending Research Octane Number (BRON), which determine their potential as additives for fuel in spark ignition (SI) engines. Tests were conducted using a single-cylinder Cooperative Fuel Research (CFR) engine and performance of the biofuels was compared to primary reference fuels (PRFs). The investigated fuels include 3-methyl-2-buten-1-ol, 3-methyl-3-buten-1-ol, 2-methylpropan-1-ol (isobutanol), and limonene. Results show that 3-methyl-2-buten-1-ol, 3-methyl-3-buten-1-ol, and 2-methylpropan-1-ol (isobutanol) sufficiently improve the anti-knock properties of gasoline.

2020 ◽  
Vol 8 (6) ◽  
pp. 1027-1032

Turbulence is an important parameter to be considered for effective combustion inside a cylinder. Heat transfer inside the cylinder affects the combustion process. Insufficient turbulence leads to incomplete combustion, resulting in pollution. Effective flame propagation leads to higher combustion rates in SI engines which in turn requires enough turbulence. Effective combustion efficiency can be achieved through higher flame propagation velocities. In the present work an attempt has been made to enhance the turbulence inside the cylinder of a single cylinder spark ignition engine by injecting solid nanoparticles into the air fuel mixture.


Sign in / Sign up

Export Citation Format

Share Document