cetane number
Recently Published Documents


TOTAL DOCUMENTS

666
(FIVE YEARS 171)

H-INDEX

40
(FIVE YEARS 7)

Fuel ◽  
2022 ◽  
Vol 314 ◽  
pp. 123082
Author(s):  
Alanood Al Zaabi ◽  
Abhijeet Raj ◽  
Mirella Elkadi ◽  
Dalaver Anjum ◽  
Azhagapillai Prabhu ◽  
...  
Keyword(s):  

2022 ◽  
Vol 8 ◽  
Author(s):  
Zihao Cao ◽  
Xiaotong Shen ◽  
Xujing Wang ◽  
Baohua Zhu ◽  
Kehou Pan ◽  
...  

Microalgae are considered promising resources for producing a variety of high-value-added products, especially for lipids and pigments. Alkalophilic microalgae have more advantages than other microalgae when cultured outdoors on a large scale. The present study investigated the comprehensive effects of different nitrogen concentrations on fucoxanthin (Fx), lipids accumulation and the fatty acid profile of the alkaliphilic microalgae Nitzschia sp. NW129 to evaluate the potential for simultaneous production of Fx and biofuels. Fx and Lipids amassed in a coordinated growth-dependent manner in response to various concentrations, reaching 18.18 mg g–1 and 40.67% dry weight (DW), respectively. The biomass of Nitzschia sp. NW129 was 0.58 ± 0.02 g L–1 in the medium at the concentration of 117.65 mM. The highest productivities of Fx (1.44 mg L–1 d–1) and lipid (19.95 ± 1.29 mg L–1 d–1) were obtained concurrently at this concentration. Furthermore, the fatty acid methyl esters revealed excellent biofuel properties with an appropriate value of the degree unsaturation (49.97), cetane number (62.72), and cold filter plugging point (2.37), which met the European standards for biofuel production (EN14214). These results provided a reliable strategy for further industrialization and comprehensive production of biofuel and Fx by using the alkaliphilic microalgal Nitzschia sp. NW129.


2022 ◽  
Vol 14 (1) ◽  
pp. 561
Author(s):  
George Papapolymerou ◽  
Athanasios Kokkalis ◽  
Dorothea Kasiteropoulou ◽  
Nikolaos Gougoulias ◽  
Anastasios Mpesios ◽  
...  

The growth kinetics and the lipid and protein content of the microalgal species Chlorella sorokiniana (CS) grown heterotrophically in growth media containing glycerol and increasing amounts of anaerobic digestate (AD) equal to 0%, 15%, 30%, and 50% was studied. The effect of the AD on the fatty acid (FA) distribution of the bio-oil extracted from the CS, as well as on the fatty acid methyl ester (FAME) properties such as the saponification number (SN), the iodine value (IV), the cetane number (CN), and the higher heating value (HHV) was also estimated. The percentage of AD in the growth medium affects the rate of carbon uptake. The maximum carbon uptake rate occurs at about 30% AD. Protein and lipid content ranged from 32.3–38.4% and 18.1–23.1%, respectively. Fatty acid distribution ranged from C10 to C26. In all AD percentages the predominant fatty acids were the medium chain FA C16 to C18 constituting up to about 89% of the total FA at 0% AD and 15% AD and up to about 54% of the total FA at 30% AD and 50% AD. With respect to unsaturation, monounsaturated FA (MUFA) were predominant, up to 56%, while significant percentages, up to about 38%, of saturated FA (SFA) were also produced. The SN, IV, CN, and HHV ranged from 198.5–208.3 mg KOH/g FA, 74.5–93.1 g I/100 g FAME, 52.7–56.1, and 39.7–40.0 MJ/kg, respectively. The results showed that with increasing AD percentage, the CN values tend to increase, while decrease in IV leads to biofuel with better ignition quality.


2022 ◽  
Author(s):  
Paxton W. Wiersema ◽  
Keunsoo Kim ◽  
Tonghun Lee ◽  
Eric Mayhew ◽  
Jacob Temme ◽  
...  

2021 ◽  
Author(s):  
Jaeyoung Cho ◽  
Yeonjoon Kim ◽  
Brian Etz ◽  
Gina Fioroni ◽  
Nimal Naser ◽  
...  

Bioderived ethers have recently drawn attention as a response to increasing demands on clean alternative fuels. A theory-experiment combined approach was introduced for the five ether molecules representing linear, branched, and cyclic ethers to derive rational design principles for low-emission and high-reactivity ethers. Flow reactor experiments and quantum-mechanical calculations were performed at high (750–1100K) and low temperature (400–700K) regimes to investigate the structural effects on their sooting tendency and reactivity, respectively. At a high-temperature regime, ethers’ high sooting tendency is related to increased C3 and C4 hydrocarbon formation compared to C1 and C2 products from oxidation reactions. On the other hand, the reactivity at the low-temperature regime is determined by the activation energies of reaction steps until ketohydroperoxide formation. These studies found that ethers’ sooting tendency and reactivity are relevant to two structural factors: the carbon type (primary to quaternary) and the relative position of ether oxygen atoms to carbon atoms. These factors were utilized to build a multivariate model to predict the cetane number (CN) and yield sooting index (YSI) of 50 different ethers. The model suggests building blocks with specific carbon types that maximize CN and minimize YSI, leading to the design principles of ethers toward low emissions and high reactivity fuels for transport applications. Ethers with a high CN and low YSI were then proposed using the developed model, and through experimental measurements, it was proved that they are promising biodiesel candidates.


Author(s):  
Hendry Y. Nanlohy

A comparative study on the combustion characteristics of a single droplet fueled by DEX, crude jatropha oil (CJO), and a mixture of CJO with a magnetic liquid catalyst of rhodium trisulfate has been carried out under normal gravity conditions. The high viscosity of crude jatropha oil makes it difficult to burn under normal conditions (room temperature and atmospheric pressure), therefore the addition of a magnetic liquid catalyst rhodium trisulfate is needed to improve the properties of crude jatropha oil. As a catalyst, rhodium trisulfate has the potential to improve combustion performance while improving the physical properties of crude jatropha oil as an alternative fuel for the better. Furthermore, performance tests were also carried out with DEX fuel with a cetane number (CNs) 53. The results showed that compared to DEX, it was seen that the liquid metal catalyst rhodium trisulfate succeeded in making crude jatropha oil more charged so that the combustion process was better. This is evidenced by a significant change in the dimensions of the flame and an increase in the combustion temperature. Moreover, it is also seen that the burning rate increases and the ignition delay become faster.


Vehicles ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 790-806
Author(s):  
Adebayo Fadairo ◽  
Weng Fai Ip

With incessant increases in fuel prices worldwide and concerns for environmental pollution, the need for alternative sources of energy is becoming urgent. In this study, the potential of grape seed oil for biodiesel as an alternative fuel was evaluated. Refined grape seed oil was bought in liquid form and then subjected to an alkali-catalyzed transesterification process for biodiesel production. The physicochemical properties of the resulting biodiesel—namely, viscosity, cetane number, and heating value—were investigated. The biodiesel was blended with a conventional diesel in various proportions and combusted in a four-cylinder, four-stroke compression ignition (diesel) engine under two loading conditions. Experimental results revealed that the blend ratio of B70 (70% GS biodiesel and 30% conventional diesel) gave the best overall engine performance in terms of maximum power, minimum emissions, and fuel consumption. Furthermore, a novel neural network technique called extreme learning machine was adopted to investigate the optimal blend ratio using the dataset obtained from the experimental results. The results also indicate that the best choice of biodiesel blend ratio is approximately B73.67 (73.67% GS biodiesel and 26.33% conventional diesel). The study shows that grape seed oil could serve as a reliable source of production of quality biodiesel fuels, which could be used as an alternative to conventional diesel fuels.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1421
Author(s):  
Maryam Hanif ◽  
Haq Nawaz Bhatti ◽  
Muhammad Asif Hanif ◽  
Umer Rashid ◽  
Asma Hanif ◽  
...  

Disadvantages of biodiesel include consumption of edible oils for fuel production, generation of wastewater and inability to recycle catalysts during homogenously catalyzed transesterification. The aim of the current study was to utilize low-cost, inedible oil extracted from Sinapis arvensis seeds to produce biodiesel using a novel nano-composite superoxide heterogeneous catalyst. Sodium superoxide (NaO2) was synthesized by reaction of sodium nitrate with hydrogen peroxide via spray pyrolysis, followed by coating onto a composite support material prepared from silicon dioxide, potassium ferricyanide and granite. The roasted (110 °C, 20 min) and unroasted S. arvensis seeds were subjected to high vacuum fractional distillation to afford fractions (F1, F2 and F3) that correlated to molecular weight. For example, F1 was enriched in palmitic acid (76–79%), F2 was enriched in oleic acid (69%) and F3 was enriched in erucic acid (61%). These fractions, as well as pure unroasted and roasted S. arvensis seed oils, were then transesterified using NaO2/SiO2/PFC/Granite to give biodiesel a maximum yield of 98.4% and 99.2%, respectively. In contrast, yields using immobilized lipase catalyst were considerably lower (78–85%). Fuel properties such as acid value, cetane number, density, iodine value, pour point, and saponification value were within the ranges specified in the American biodiesel standard, ASTM D6751, where applicable. These results indicated that the nano-composite catalyst was excellent for production of biodiesel from unroasted and roasted S. arvensis seed oil and its fractions.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6989
Author(s):  
Abdul Gani Abdul Jameel

Gasoline is one of the most important distillate fuels obtained from crude refining; it is mainly used as an automotive fuel to propel spark-ignited (SI) engines. It is a complex hydrocarbon fuel that is known to possess several hundred individual molecules of varying sizes and chemical classes. These large numbers of individual molecules can be assembled into a finite set of molecular moieties or functional groups that can independently represent the chemical composition. Identification and quantification of groups enables the prediction of many fuel properties that otherwise may be difficult and expensive to measure experimentally. In the present work, high resolution 1H nuclear magnetic resonance (NMR) spectroscopy, an advanced structure elucidation technique, was employed for the molecular characterization of a gasoline sample in order to analyze the functional groups. The chemical composition of the gasoline sample was then expressed using six hydrocarbon functional groups, as follows: paraffinic groups (CH, CH2 and CH3), naphthenic CH-CH2 groups and aromatic C-CH groups. The obtained functional groups were then used to predict a number of fuel properties, including research octane number (RON), motor octane number (MON), derived cetane number (DCN), threshold sooting index (TSI) and yield sooting index (YSI).


Designs ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 73
Author(s):  
Asep Kadarohman ◽  
Fitri Khoerunnisa ◽  
Syazwana Sapee ◽  
Ratnaningsih Eko Sardjono ◽  
Izuan Izzudin ◽  
...  

A study on the application of oxygenated turpentine oil as a bio-additive in diesel fuel was conducted. The purpose of this research was to investigate the effect of oxygenated turpentine oil additive in diesel fuel on the performance and emission characteristics in diesel engines. Oxygenated turpentine oil is obtained from the oxidation process of turpentine oil. In this experimental study, the influences of oxygenated turpentine oil-diesel blended fuel OT0.2 (0.2% vol oxygenated turpentine oil and 99.8% vol diesel) were compared with pure diesel on engine performance, and emission characteristics were examined in a one-cylinder four-stroke CI engine. The test was performed at two engine loads (25% and 50%) and seven engine speeds (from 1200–2400 rpm with intervals of 200 rpm). The physiochemical characteristics of test fuels were acquired. The engine indicated power, indicated torque, fuel flow rate, and emissions (carbon dioxide, CO2; carbon monoxide, CO; and nitrogen oxide, NOX) were examined. The results revealed that the engine power shows slight increments of 0.7–1.1%, whereas the engine torque slightly decreased with oxygenated turpentine usage compared to pure diesel in most conditions. Furthermore, a reduction in NOX emission decreased by about 0.3–66% with the addition of oxygenated turpentine in diesel compared to diesel. However, usage of OT0.2 decreased fuel flow rate in most speeds at low load but gave a similar value to diesel at 50% load. CO emissions slightly increased with an average of 1.2% compared to diesel while CO2 emissions increased up to 37.5% than diesel. The high-water content, low cetane number, and low heating value of oxygenated turpentine oil were the reasons for the inverse effect found in the engine performances.


Sign in / Sign up

Export Citation Format

Share Document