scholarly journals The contribution of episodic Long-term Memory to Working Memory for Bindings.

2021 ◽  
Author(s):  
Lea Maria Bartsch ◽  
Klaus Oberauer

The Binding Hypothesis of working memory (WM) is that WM capacity is limited by interference between bindings but not items. It implies the prediction that with increasing set size, memory for bindings should decline, whereas memory for items should be (largely) unimpaired. Here we test the binding hypothesis for bindings between words and pictures. The first experiment supported the binding hypothesis, yet also revealed a strong hint that episodic LTM contributed substantially to binding memory, especially at larger set sizes. Therefore, our second goal was to investigate this contribution, and to isolate it from the contribution of WM to binding memory. Across three additional experiments we showed a double dissociation of contributions of WM and episodic LTM to binding memory: Performance at set sizes larger than 3 were specifically affected by proactive interference – but were immune to influences from a distractor filled delay. In contrast, performance at set size 2 was unaffected by proactive interference but harmed by a distractor filled delay.

Author(s):  
Ian Neath ◽  
Jean Saint-Aubin ◽  
Tamra J. Bireta ◽  
Andrew J. Gabel ◽  
Chelsea G. Hudson ◽  
...  

2019 ◽  
Author(s):  
Hayden Schill ◽  
Jeremy Wolfe ◽  
Timothy F. Brady

Memory capacity depends on prior knowledge, both in working memory and in long-term memory. For example, radiologists have improved long-term memory for medical images compared to novices. Furthermore, people tend to remember abnormal or surprising items best. This is often claimed to arise primarily because such items attract additional attention at encoding. How do expertise and abnormality interact when experts are actively searching for abnormalities; e.g. radiologists looking at mammograms? In the current work, we investigate whether expert radiologists (N=32) show improved memory performance for abnormal images compared to novice participants (N=60). We consider two types of “abnormality.” A mammogram can have a focal abnormality that can be localized or it could simply be the mammogram of a woman known to have cancer (e.g. the image of the breast contralateral to the focal abnormality). Must an image have a focal abnormality for additional attentional processing to be engaged? We found that experts have better memory for mammograms than novice participants and enhanced memory for abnormal images relative to normal images. Overall, radiologists showed no memory benefit for the contralateral-abnormal images and did not discriminate them from normal images, but had enhanced memory for images with focal abnormalities. Our results suggest that focal abnormalities play an important role in enhancing memory of expert observers.


2020 ◽  
Author(s):  
Lea Maria Bartsch ◽  
Peter Shepherdson

Previous research indicates that long-term memory (LTM) may contribute to performance in working memory (WM) tasks. Across three experiments we investigated the extent to which active maintenance in WM can be replaced by relying on information stored in episodic LTM, thereby freeing capacity for additional information in WM. First, participants encoded word pairs into LTM, and then completed a WM task, also involving word pairs. Crucially, the pairs presented in each WM trial comprised varying numbers of new pairs and the previously learned LTM pairs. Experiment 1 showed that recall performance in the WM task was unaffected when memory set size increased through the addition of LTM pairs, but that it deteriorated when set size increased through adding new pairs. In Experiment 2 we investigated the robustness of this effect, orthogonally manipulating the number of new and LTM pairs used in the WM task. When WM load was low, performance declined with the addition of LTM pairs, but remained superior to performance with the matched set size comprising only new pairs. By contrast, when WM load was higher, adding LTM pairs did not affect performance. In Experiment 3 we found that the benefit of LTM representations arises from retrieving these during the WM test, leading them to suffer from typical interference effects. We conclude that individuals can outsource workload to LTM to optimise performance, and that the WM system negotiates the exchange of information between WM and LTM depending on the current memory load.


2021 ◽  
Author(s):  
Benjamin Goecke ◽  
Klaus Oberauer

In tests of working memory with verbal or spatial materials repeating the same memory sets across trials leads to improved memory performance. This well-established “Hebb repetition effect” could not be shown for visual materials. This absence of the Hebb effect can be explained in two ways: Either persons fail to acquire a long-term memory representation of the repeated memory sets, or they acquire such long-term memory representations, but fail to use them during the working memory task. In two experiments, (N1 = 18 and N2 = 30), we aimed to decide between these two possibilities by manipulating the long-term memory knowledge of some of the memory sets used in a change-detection task. Before the change-detection test, participants learned three arrays of colors to criterion. The subsequent change-detection test contained both previously learned and new color arrays. Change detection performance was better on previously learned compared to new arrays, showing that long-term memory is used in change detection.


2014 ◽  
Vol 222 (2) ◽  
pp. 90-99 ◽  
Author(s):  
Klara Marton ◽  
Naomi Eichorn

Individual differences in working memory have been related to interactions between working memory and long-term memory (LTM). The present study examined this interaction in children with and without language impairment. We used two listening span tasks and two nonword repetition tasks. The results suggest a strong interaction among age, language status, and task complexity. Children with specific language impairment showed consistently poor performance across tasks and indicated a weakness in using long-term knowledge to support working memory performance. The findings show that these children do not benefit from various manipulations designed to enhance working memory performance via LTM support due to a combination of inefficiencies in maintaining and updating items in working memory and retrieving information from LTM, in part because of their poor resistance to interference.


Author(s):  
Benjamin Goecke ◽  
Klaus Oberauer

AbstractIn tests of working memory with verbal or spatial materials, repeating the same memory sets across trials leads to improved memory performance. This well-established “Hebb repetition effect” could not be shown for visual materials in previous research. The absence of the Hebb effect can be explained in two ways: Either persons fail to acquire a long-term memory representation of the repeated memory sets, or they acquire such long-term memory representations, but fail to use them during the working memory task. In two experiments (N1 = 18 and N2 = 30), we aimed to decide between these two possibilities by manipulating the long-term memory knowledge of some of the memory sets used in a change-detection task. Before the change-detection test, participants learned three arrays of colors to criterion. The subsequent change-detection test contained both previously learned and new color arrays. Change detection performance was better on previously learned compared with new arrays, showing that long-term memory is used in change detection.


Sign in / Sign up

Export Citation Format

Share Document