scholarly journals More than impossible: negative and complex probabilities and their philosophical interpretation

2020 ◽  
Author(s):  
Vasil Dinev Penchev

A historical review and philosophical look at the introduction of “negative probability” as well as “complex probability” is suggested. The generalization of “probability” is forced by mathematical models in physical or technical disciplines. Initially, they are involved only as an auxiliary tool to complement mathematical models to the completeness to corresponding operations. Rewards, they acquire ontological status, especially in quantum mechanics and its formulation as a natural information theory as “quantum information” after the experimental confirmation the phenomena of “entanglement”. Philosophical interpretations appear. A generalization of them is suggested: ontologically, they correspond to a relevant generalization to the relation of a part and its whole where the whole is a subset of the part rather than vice versa. The structure of “vector space” is involved necessarily in order to differ the part “by itself” from it in relation to the whole as a projection within it. That difference is reflected in the new dimension of vector space both mathematically and conceptually. Then, “negative or complex probability” are interpreted as a quantity corresponding the generalized case where the part can be “bigger” than the whole, and it is represented only partly in general within the whole.

2020 ◽  
Author(s):  
Vasil Penchev

A historical review and philosophical look at the introduction of “negative probability” as well as “complex probability” is suggested. The generalization of “probability” is forced by mathematical models in physical or technical disciplines. Initially, they are involved only as an auxiliary tool to complement mathematical models to the completeness to corresponding operations. Rewards, they acquire ontological status, especially in quantum mechanics and its formulation as a natural information theory as “quantum information” after the experimental confirmation the phenomena of “entanglement”. Philosophical interpretations appear. A generalization of them is suggested: ontologically, they correspond to a relevant generalization to the relation of a part and its whole where the whole is a subset of the part rather than vice versa. The structure of “vector space” is involved necessarily in order to differ the part “by itself” from it in relation to the whole as a projection within it. That difference is reflected in the new dimension of vector space both mathematically and conceptually. Then, “negative or complex probability” are interpreted as a quantity corresponding the generalized case where the part can be “bigger” than the whole, and it is represented only partly in general within the whole.


2020 ◽  
Author(s):  
Vasil Penchev

A historical review and philosophical look at the introduction of “negative probability” as well as “complex probability” is suggested. The generalization of “probability” is forced by mathematical models in physical or technical disciplines. Initially, they are involved only as an auxiliary tool to complement mathematical models to the completeness to corresponding operations. Rewards, they acquire ontological status, especially in quantum mechanics and its formulation as a natural information theory as “quantum information” after the experimental confirmation the phenomena of “entanglement”. Philosophical interpretations appear. A generalization of them is suggested: ontologically, they correspond to a relevant generalization to the relation of a part and its whole where the whole is a subset of the part rather than vice versa. The structure of “vector space” is involved necessarily in order to differ the part “by itself” from it in relation to the whole as a projection within it. That difference is reflected in the new dimension of vector space both mathematically and conceptually. Then, “negative or complex probability” are interpreted as a quantity corresponding the generalized case where the part can be “bigger” than the whole, and it is represented only partly in general within the whole.


Entropy ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 747
Author(s):  
Arkady Plotnitsky

Following the view of several leading quantum-information theorists, this paper argues that quantum phenomena, including those exhibiting quantum correlations (one of their most enigmatic features), and quantum mechanics may be best understood in quantum-informational terms. It also argues that this understanding is implicit already in the work of some among the founding figures of quantum mechanics, in particular W. Heisenberg and N. Bohr, half a century before quantum information theory emerged and confirmed, and gave a deeper meaning to, to their insights. These insights, I further argue, still help this understanding, which is the main reason for considering them here. My argument is grounded in a particular interpretation of quantum phenomena and quantum mechanics, in part arising from these insights as well. This interpretation is based on the concept of reality without realism, RWR (which places the reality considered beyond representation or even conception), introduced by this author previously, in turn, following Heisenberg and Bohr, and in response to quantum information theory.


Author(s):  
Majid Beshkar

This paper introduces the first version of the QBIT theory of consciousness which is based on inspirations and insights from Quantum mechanics, Biology, Information theory, and Thermodynamics. The ultimate goal of the QBIT theory is to find scientifically correct answers to the following four questions: What is the nature of qualia? How are qualia generated? Why are qualia subjective? Why does a quale have a particular meaning?The theory, in its first version, proposes tentative answers to these four fundamental questions about consciousness. According to the QBIT theory qualia are quantum information encoded in maximally entangled pure states. Qualia are generated when robustness of a representation exceeds a certain threshold. Qualia are subjective because maximally entangled pure states are not shareable. The quality or meaning of a particular quale stems from information compression via the matching and unification of patterns.


Author(s):  
Stephen Barnett

The astute reader might have formed the impression that quantum in formation science is a rather qualitative discipline because we have not, as yet, explained how to quantify quantum information. There are three good reasons for leaving this important question until the final chapter. Firstly, quantum information theory is technically demanding and to treat it at an earlier stage might have suggested that our subject was more complicated than it is. Secondly, there is the fact that many of the ideas in the field, such as teleportation and quantum circuits, are unfamiliar and it was important to present these as simply as possible. Finally, and most importantly, the theory of quantum information is not yet fully developed. It has not yet reached, in particular, the level of completeness of its classical counterpart. For this reason we can answer only some of the many questions we would like a quantum theory of information to address. Having said this, we can say that however, there are beautiful and useful mathematical results and it seems certain that these will continue to form an important part of the theory as it develops. We noted in the introduction to Chapter 1 that ‘quantum mechanics is a probabilistic theory and so it was inevitable that a quantum information theory would be developed’. A presentation of at least the beginnings of a quantitative theory is the objective of this final chapter. The entropy or information derived from a given probability distribution is, as we have seen, a convenient measure of the uncertainty associated with the distribution. If many of the probabilities are large, so that many of the possible events are comparably likely, then the entropy will be large. If one probability is close to unity, however, then the entropy will be small. It is convenient to introduce entropy in quantum mechanics as a measure of the uncertainty, or lack of knowledge, of the form of the state vector. If we know that our system is in a particular pure state then the associated uncertainty or entropy should be zero. For mixed states, however, it will take a non-zero value.


Author(s):  
Majid Beshkar

The QBIT theory is an attempt toward solving the problem of consciousness based on empirical evidence provided by various scientific disciplines including quantum mechanics, biology, information theory, and thermodynamics. This theory formulates the problem of consciousness in the following four questions, and provides preliminary answers for each question: Question 1: What is the nature of qualia? Answer: A quale is a superdense pack of quantum information encoded in maximally entangled pure states. Question 2: How are qualia generated? Answer: When a pack of quantum information is compressed beyond a certain threshold, a quale is generated. Question 3: Why are qualia subjective? Answer: A quale is subjective because a pack of information encoded in maximally entangled pure states are essentially private and unshareable. Question 4: Why does a quale have a particular meaning? Answer: A pack of information within a cognitive system gradually obtains a particular meaning as it undergoes a progressive process of interpretation performed by an internal model installed in the system.This paper introduces the QBIT theory of consciousness, and explains its basic assumptions and conjectures.


Sign in / Sign up

Export Citation Format

Share Document