scholarly journals The Frontier of Time: The Concept of Quantum Information

2020 ◽  
Author(s):  
Vasil Dinev Penchev

A concept of formal transcendentalism is utilized. The fundamental and definitive property of the totality suggests for “the totality to be all”, thus, its externality (unlike any other entity) is contained within it. This generates a fundamental (or philosophical) “doubling” of anything being referred to the totality, i.e. considered philosophically. Thus, that doubling as well as transcendentalism underlying it can be interpreted formally as an elementary choice such as a bit of information and a quantity corresponding to the number of elementary choices to be defined. This is the quantity of information defined both transcendentally and formally and thus, philosophically and mathematically. If one defines information specifically, as an elementary choice between finiteness (or mathematically, as any natural number of Peano arithmetic) and infinity (i.e. an actually infinite set in the meaning of set theory), the quantity of quantum information is defined. One can demonstrate that the so-defined quantum information and quantum information standardly defined by quantum mechanics are equivalent to each other. The equivalence of the axiom of choice and the well-ordering “theorem” is involved. It can be justified transcendentally as well, in virtue of transcendental equivalence implied by the totality. Thus, all can be considered as temporal as far anything possesses such a temporal counterpart necessarily. Formally defined, the frontier of time is the current choice now, a bit of information, furthermore interpretable as a qubit of quantum information.

2020 ◽  
Author(s):  
Vasil Dinev Penchev

The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds to set-theory or intuitionist approach to the foundation of mathematics and to Peano or Heyting arithmetic. Quantum mechanics can be reformulated in terms of information introducing the concept and quantity of quantum information. A qubit can be equivalently interpreted as that generalization of “bit” where the choice is among an infinite set or series of alternatives. The complex Hilbert space can be represented as both series of qubits and value of quantum information. The complex Hilbert space is that generalization of Peano arithmetic where any natural number is substituted by a qubit. “Negation”, “choice”, and “infinity” can be inherently linked to each other both in the foundation of mathematics and quantum mechanics by the meditation of “information” and “quantum information”.


2010 ◽  
Vol 75 (3) ◽  
pp. 996-1006 ◽  
Author(s):  
Kyriakos Keremedis ◽  
Eleftherios Tachtsis

AbstractWe establish the following results:1. In ZF (i.e., Zermelo-Fraenkel set theory minus the Axiom of Choice AC), for every set I and for every ordinal number α ≥ ω, the following statements are equivalent:(a) The Tychonoff product of ∣α∣ many non-empty finite discrete subsets of I is compact.(b) The union of ∣α∣ many non-empty finite subsets of I is well orderable.2. The statement: For every infinite set I, every closed subset of the Tychonoff product [0, 1]Iwhich consists offunctions with finite support is compact, is not provable in ZF set theory.3. The statement: For every set I, the principle of dependent choices relativised to I implies the Tychonoff product of countably many non-empty finite discrete subsets of I is compact, is not provable in ZF0 (i.e., ZF minus the Axiom of Regularity).4. The statement: For every set I, every ℵ0-sized family of non-empty finite subsets of I has a choice function implies the Tychonoff product of ℵ0many non-empty finite discrete subsets of I is compact, is not provable in ZF0.


1972 ◽  
Vol 6 (3) ◽  
pp. 447-457 ◽  
Author(s):  
J.L. Hickman

We work in a Zermelo-Fraenkel set theory without the Axiom of Choice. In the appendix to his paper “Sur les ensembles finis”, Tarski proposed a finiteness criterion that we have called “C-finiteness”: a nonempty set is called “C-finite” if it cannot be partitioned into two blocks, each block being equivalent to the whole set. Despite the fact that this criterion can be shown to possess several features that are undesirable in a finiteness criterion, it has a fair amount of intrinsic interest. In Section 1 of this paper we look at a certain class of C-finite sets; in Section 2 we derive a few consequences from the negation of C-finiteness; and in Section 3 we show that not every C-infinite set necessarily possesses a linear ordering. Any unexplained notation is given in my paper, “Some definitions of finiteness”, Bull. Austral. Math. Soc. 5 (1971).


1994 ◽  
Vol 59 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Lorenz Halbeisen ◽  
Saharon Shelah

AbstractIn this paper, we consider certain cardinals in ZF (set theory without AC, the axiom of choice). In ZFC (set theory with AC), given any cardinals and , either ≤ or ≤ . However, in ZF this is no longer so. For a given infinite set A consider seq1-1(A), the set of all sequences of A without repetition. We compare |seq1-1(A)|, the cardinality of this set, to ||, the cardinality of the power set of A. What is provable about these two cardinals in ZF? The main result of this paper is that ZF ⊢ ∀A(| seq1-1(A)| ≠ ||), and we show that this is the best possible result. Furthermore, it is provable in ZF that if B is an infinite set, then | fin(B)| < | (B*)| even though the existence for some infinite set B* of a function ƒ from fin(B*) onto (B*) is consistent with ZF.


2009 ◽  
Vol 74 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Nathan Bowler ◽  
Thomas Forster

It is generally known that infinite symmetric groups have few nontrivial normal subgroups (typically only the subgroups of bounded support) and none of small index. (We will explain later exactly what we mean by small). However the standard analysis relies heavily on the axiom of choice. By dint of a lot of combinatorics we have been able to dispense—largely—with the axiom of choice. Largely, but not entirely: our result is that if X is an infinite set with ∣X∣ = ∣X × X∣ then Symm(X) has no nontrivial normal subgroups of small index. Some condition like this is needed because of the work of Sam Tarzi who showed [4] that, for any finite group G, there is a model of ZF without AC in which there is a set X with Symm(X)/FSymm(X) isomorphic to G.The proof proceeds in two stages. We consider a particularly useful class of permutations, which we call the class of flexible permutations. A permutation of X is flexible if it fixes at least ∣X∣-many points. First we show that every normal subgroup of Symm(X) (of small index) must contain every flexible permutation. This will be theorem 4. Then we show (theorem 7) that the flexible permutations generate Symm(X).


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The paper justifies the following theses: The totality can found time if the latter isaxiomatically represented by its “arrow” as a well-ordering. Time can found choice and thusinformation in turn. Quantum information and its units, the quantum bits, can be interpreted astheir generalization as to infinity and underlying the physical world as well as theultimate substance of the world both subjective and objective. Thus a pathway ofinterpretation between the totality via time, order, choice, and information to the substance ofthe world is constructed. The article is based only on the well-known facts and definitions andis with no premises in this sense. Nevertheless it is naturally situated among works and ideasof Husserl and Heidegger, linked to the foundation of mathematics by the axiom of choice, tothe philosophy of quantum mechanics and information.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The paper justifies the following theses: The totality can found time if the latteris axiomatically represented by its “arrow” as a well-ordering. Time can found choice andthus information in turn. Quantum information and its units, the quantum bits, can beinterpreted as their generalization as to infinity and underlying the physical world as wellas the ultimate substance of the world both subjective and objective. Thus a pathway ofinterpretation between the totality via time, order, choice, and information to the substance ofthe world is constructed. The article is based only on the well-known facts and definitions andis with no premises in this sense. Nevertheless it is naturally situated among works and ideasof Husserl and Heidegger, linked to the foundation of mathematics by the axiom of choice, tothe philosophy of quantum mechanics and information.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

Quantum invariance designates the relation of any quantum coherent state to the corresponding statistical ensemble of measured results. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble after measurement.A set-theory corollary is the curious invariance to the axiom of choice: Any coherent state excludes any well-ordering and thus excludes also the axiom of choice. It should be equated to a well-ordered set after measurement and thus requires the axiom of choice.Quantum invariance underlies quantum information and reveals it as the relation of an unordered quantum “much” (i.e. a coherent state) and a well-ordered “many” of the measured results (i.e. a statistical ensemble). It opens up to a new horizon, in which all physical processes and phenomena can be interpreted as quantum computations realizing relevant operations and algorithms on quantum information. All phenomena of entanglement can be described in terms of the so defined quantum information.Quantum invariance elucidates the link between general relativity and quantum mechanics and thus, the problem of quantum gravity.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The quantum information introduced by quantum mechanics is equivalent to that generalization of the classical information from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The qubit, can be interpreted as that generalization of bit, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time after measurement. The quantity of quantum information is the ordinal corresponding to the infinity series in question.1


2016 ◽  
Vol 95 (2) ◽  
pp. 177-182 ◽  
Author(s):  
NATTAPON SONPANOW ◽  
PIMPEN VEJJAJIVA

Forster [‘Finite-to-one maps’, J. Symbolic Logic68 (2003), 1251–1253] showed, in Zermelo–Fraenkel set theory, that if there is a finite-to-one map from ${\mathcal{P}}(A)$, the set of all subsets of a set $A$, onto $A$, then $A$ must be finite. If we assume the axiom of choice (AC), the cardinalities of ${\mathcal{P}}(A)$ and the set $S(A)$ of permutations on $A$ are equal for any infinite set $A$. In the absence of AC, we cannot make any conclusion about the relationship between the two cardinalities for an arbitrary infinite set. In this paper, we give a condition that makes Forster’s theorem, with ${\mathcal{P}}(A)$ replaced by $S(A)$, provable without AC.


Sign in / Sign up

Export Citation Format

Share Document