scholarly journals GPS-TEC observations over Nepal during the Total Solar Eclipse on 22 July 2009

2021 ◽  
Vol 7 (1) ◽  
pp. 54-59
Author(s):  
A. N. Shrestha ◽  
Y. Migoya-Orue

This paper explores the ionospheric response in terms of Total Electron Content (TEC) during the 22 July 2009 Total Solar Eclipse. Using the data stored at Biratnagar (BRN2), Ramite (RMTE), Dhangadhi (DNGD), Nepalganj (NPGJ), and Taplejung (TPLJ) Global Positioning System (GPS) stations, the ionospheric activity was investigated through changes in TEC. Our research is based on GPS-TEC measurements from a widely dispersed GPS network across various geographical locations in Nepal, taking place on July 17-21 as a pre-event, July 22 as the main event, and July 23-27 as a post-event. The analysis reveals that the reduction in the TEC level is proportional to the magnitude of the total solar eclipse. The variation of the TEC depends on latitude as well as longitude. We found that TEC depletion was up to 5% from pre-event to main-event and up to 30% from main-event to post-event during the totality of the eclipse. The eclipse was accompanied by the 10-hour geomagnetic storm in Nepal, which was the explanation for the TEC upgrade to 50% on the main event day from pre-event and decreased by 25% from main-event to post-event. The result obtained in this work demonstrates the influence of the eclipse/storm on the variation of TEC.

2004 ◽  
Vol 22 (5) ◽  
pp. 1585-1593 ◽  
Author(s):  
J. Y. Liu ◽  
Y. J. Chuo ◽  
S. J. Shan ◽  
Y. B. Tsai ◽  
Y. I. Chen ◽  
...  

Abstract. In this paper we examine pre-earthquake ionospheric anomalies by the total electron content (TEC) derived from a ground-based receiver of the Global Positioning System (GPS). A 15-day running median of the TEC and the associated inter-quartile range (IQR) are utilized as a reference for identifying abnormal signals during all of the 20M≥6.0 earthquakes in the Taiwan area from September 1999 to December 2002. Results show that the pre-earthquake ionospheric anomalies appear during 18:00–22:00LT (LT=UT+8h) within 5 days prior to 16 of the 20M≥6.0 earthquakes. This success rate of 80% (=16/20%) suggests that the GPS TEC is useful to register pre-earthquake ionospheric anomalies appearing before large earthquakes. Key words. Ionosphere (ionospheric disturbances; ionosphere-atmosphere interactions)


Author(s):  
Adil Hussain ◽  
Munawar Shah

The international reference ionosphere (IRI) models have been widely used for correcting the ionospheric scintillations at different altitude levels. An evaluation on the performance of VTEC correction from IRI models (version 2007, 2012 and 2016) over Sukkur, Pakistan (27.71º N, 68.85º E) is presented in this work. Total Electron Content (TEC) from IRI models and GPS in 2019 over Sukkur region are compared. The main aim of this comparative analysis is to improve the VTEC in low latitude Sukkur, Pakistan. Moreover, this study will also help us to identify the credible IRI model for the correction of Global Positioning System (GPS) signal in low latitude region in future. The development of more accurate TEC finds useful applications in enhancing the extent to which ionospheric influences on radio signals are corrected. VTEC from GPS and IRI models are collected between May 1, 2019 and May 3, 2019. Additionally, Dst and Kp data are also compared in this work to estimate the geomagnetic storm variations. This study shows a good correlation of 0.83 between VTEC of GPS and IRI 2016. Furthermore, a correlation of 0.82 and 0.78 is also recorded for IRI 2012 and IRI 2007 respectively, with VTEC of GPS. The IRI TEC predictions and GPS-TEC measurements for the studied days reveal the potential of IRI model as a good candidate over Pakistan.


2013 ◽  
Vol 31 (9) ◽  
pp. 1549-1558 ◽  
Author(s):  
S. Kumar ◽  
A. K. Singh ◽  
R. P. Singh

Abstract. The variability of ionospheric response to the total solar eclipse of 22 July 2009 has been studied analyzing the GPS data recorded at the four Indian low-latitude stations Varanasi (100% obscuration), Kanpur (95% obscuration), Hyderabad (84% obscuration) and Bangalore (72% obscuration). The retrieved ionospheric vertical total electron content (VTEC) shows a significant reduction (reflected by all PRNs (satellites) at all stations) with a maximum of 48% at Varanasi (PRN 14), which decreases to 30% at Bangalore (PRN 14). Data from PRN 31 show a maximum of 54% at Kanpur and 26% at Hyderabad. The maximum decrement in VTEC occurs some time (2–15 min) after the maximum obscuration. The reduction in VTEC compared to the quiet mean VTEC depends on latitude as well as longitude, which also depends on the location of the satellite with respect to the solar eclipse path. The amount of reduction in VTEC decreases as the present obscuration decreases, which is directly related to the electron production by the photoionization process. The analysis of electron density height profile derived from the COSMIC (Constellation Observing System for Meteorology, Ionosphere & Climate) satellite over the Indian region shows significant reduction from 100 km altitude up to 800 km altitude with a maximum of 48% at 360 km altitude. The oscillatory nature in total electron content data at all stations is observed with different wave periods lying between 40 and 120 min, which are attributed to gravity wave effects generated in the lower atmosphere during the total solar eclipse.


Sign in / Sign up

Export Citation Format

Share Document