lower atmosphere
Recently Published Documents


TOTAL DOCUMENTS

1389
(FIVE YEARS 315)

H-INDEX

64
(FIVE YEARS 9)

2022 ◽  
Vol 9 ◽  
Author(s):  
Lanlan Rao ◽  
Jian Xu ◽  
Dmitry S. Efremenko ◽  
Diego G. Loyola ◽  
Adrian Doicu

Precise knowledge about aerosols in the lower atmosphere (optical properties and vertical distribution) is particularly important for studying the Earth’s climatic and weather conditions. Measurements from satellite sensors in sun-synchronous and geostationary orbits can be used to map distributions of aerosol parameters in global or regional scales. The new-generation sensor Tropospheric Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5 Precursor (S5P) measures a wide variety of atmospheric trace gases and aerosols that are associated with climate change and air quality using a number of spectral bands between the ultraviolet and the shortwave infrared. In this study, we perform a sensitivity analysis of the forward model parameters and instrument information that are associated with the retrieval accuracy of aerosol layer height (ALH) and optical depth (AOD) using the oxygen (O2) A-band. Retrieval of aerosol parameters from hyperspectral satellite measurements requires accurate surface representation and parameterization of aerosol microphysical properties and precise radiative transfer calculations. Most potential error sources arising from satellite retrievals of aerosol parameters, including uncertainties in aerosol models, surface properties, solar/satellite viewing geometry, and wavelength shift, are analyzed. The impact of surface albedo accuracy on retrieval results can be dramatic when surface albedo values are close to the critical surface albedo. An application to the real measurements of two scenes indicates that the retrieval works reasonably in terms of retrieved quantities and fit residuals.


MAUSAM ◽  
2022 ◽  
Vol 53 (2) ◽  
pp. 145-152
Author(s):  
P. ERNEST RAJ ◽  
P.C.S. DEVARA ◽  
R. S. MAHESKUMAR ◽  
G. PANDITHURAI ◽  
K.K. DANI

Lidar-derived aerosol vertical profiles obtained at Pune, a low latitude tropical station, on about 535 days during a ten-year period (1987 – 96) along with simultaneous pilot-balloon wind (speed and direction) data of India Meteorological Department, Pune have been used in the study to investigate the influence of horizontal winds on the aerosol characteristics in the lower atmosphere.  Aerosol column content in the atmospheric boundary layer (surface to 1100 m altitude above ground-level) as well as aerosol number density at the surface level (at 50 m) showed relatively higher values over the lidar site whenever the winds were blowing from the main urban and industrial regions of the city of Pune.  This effect was found to be more pronounced during the winter season.  Wind speeds also correlate well with increased aerosol loading, but only during selected high wind speed episodes.  Thus the study shows that the short- and long-term increases in aerosol concentration/loading over the observation site are, to a large extent, influenced by horizontal winds in the surface layers and this in turn, can be attributed to the increasing human/urban activity around the lidar site over the years.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Romain Gaillard ◽  
Marjorie Perroud ◽  
Stéphane Goyette ◽  
Jérôme Kasparian

AbstractThe interaction between large inland water bodies and the atmosphere impacts the evolution of regional weather and climate, which in turn affects the lake dynamics, thermodynamics, ice-formation, and, therefore, ecosystems. Over the last decades, various approaches have been used to model lake thermodynamics and dynamics in standalone mode or coupled to numerical atmospheric models. We assess a turbulence-closure $$k-\epsilon$$ k - ϵ multi-column lake model in standalone mode as a computationally-efficient alternative to a full three-dimensional hydrodynamic model in the case of Lake Geneva. While it struggles to reproduce some short-term features, the multi-column model reasonably reproduces the seasonal mean of the thermal horizontal and vertical structures governing heat and mass exchanges between the lake surface and the lower atmosphere (stratified period, thermocline depth, stability of the water column). As it requires typically two orders of magnitude less computational ressources, it may allow a two-way coupling with a RCM on timescales or spatial resolutions where full 3D lake models are too demanding.


2022 ◽  
Vol 14 (2) ◽  
pp. 266
Author(s):  
Yuanxin Liang ◽  
Huizheng Che ◽  
Hong Wang ◽  
Wenjie Zhang ◽  
Lei Li ◽  
...  

Aerosols can affect vertical thermal structure during heavily polluted episodes (HPEs). Here, we selected four typical HPEs in 2018, which were further subdivided into dust and haze events. The vertical distribution of aerosols extinction coefficient (EC) and variations in columnar optical properties were investigated based on sun-photometer and Lidar observation at an urban site in Beijing. The vertical characteristics in shortwave radiative heating rate (HR) of aerosols were studied using NASA/Goddard radiative transfer model along with observational data. In the haze episode, EC layer is less than 1.5 km and shows strong scattering, with single-scattering albedo (SSA440nm) of ~0.97. The heating effects are observed at the middle and upper atmosphere, and slight heating effects are found at the lower layer. The mean HR within 1.5 km can be up to 16.3 K day−1 with EC of 1.27 km−1, whereas the HR within 0.5 km is only 1.3 K day−1. In the dust episode, dust aerosols present the absorption with SSA440nm of ~0.88, which would heat the lower atmosphere to promote vertical turbulence, and the height of EC layer can be up to 2.0–3.5 km. In addition, the strong heating effects of dust layer produced cooling effects near the surface. Therefore, the accurate measurement of aerosols optical properties in HPEs is of great significance for modeling aerosols direct radiative effects.


Author(s):  
Mei-Yun Lin ◽  
Raluca Ilie

Ionospheric molecular ions, such as NO+, N2+ and O2+, are gravitationally bound, and are expected to undergo recombination to form a pair of neutral atoms, due to short dissociative recombination lifetime. Therefore, they are expected to be relatively cold in the Earth’s atmosphere, compared with light ions such as H+ and He+, or even heavier ions such as N+ or O+. However, several spacecraft missions observed their presence in the high-altitude ionosphere and the magnetosphere, predominantly during the geomagnetically active times. This hints to the possibility that molecular ions have the ability to acquire sufficient energy in a very short time, and can be used as tracers of mass differentiated vertical transport to understand the mechanisms responsible for “fast ionospheric outflow” and, In this letter, we review the observational data sets that reported on the abundances of molecular ions in the Earth’s magnetosphere-ionosphere system, starting from their first observations by the Sputnik III mission, to the current Arase (ERG) satellite and Enhanced Polar Outflow Probe (e-POP) missions. The available data suggests that molecular ions are quite abundant in the lower atmosphere at all times, but are only seen in the high-altitude ionosphere and magnetosphere during the times of increased geomagnetic activity.


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Satoshi Ishii ◽  
Yoshihiro Tomikawa ◽  
Masahiro Okuda ◽  
Hidehiko Suzuki

AbstractImaging observations of OH airglow were performed at Meiji University, Japan (35.6° N, 139.5° E), from May 2018 to December 2019. Mountainous areas are located to the west of the imager, and westerly winds are dominant in the lower atmosphere throughout the year. Mountain waves (MWs) are generated and occasionally propagate to the upper atmosphere. However, only four likely MW events were identified, which are considerably fewer than expected. There are two possible reasons for the low incidence: (1) MWs do not propagate easily to the upper mesosphere due to background wind conditions, and/or (2) the frequency of MW excitation was low around the observation site. Former possibility is found not to be a main reason to explain the frequency by assuming typical wind profiles in troposphere and upper mesosphere over Japan. Thus, frequency and spatial distribution of orographic wavy clouds were investigated by analyzing images taken by the Himawari-8 geostationary meteorological satellite in 2018. The number of days when wavy clouds were detected in the troposphere around the observation site (Kanto area) was about a quarter of that around the Tohoku area. This result indicates that frequency of over-mountain flow which is thought to be a source of excitation of MWs is low in Kanto area. We also found that the angle between the horizontal wind direction in troposphere and the orientation of the mountain ridge is a good proxy for the occurrence of orographic wavy clouds, i.e., excitation of MWs. We applied this proxy to the topography around the world to investigate regions where MWs are likely to be excited frequently throughout the year to discuss the likelihood of "MW hotspots" at various spatial scale. Graphical Abstract


2021 ◽  
Vol 10 (20) ◽  
pp. 72-78
Author(s):  
Daniela Giosanu ◽  
Mădălina Cristina Marian ◽  
Daniela Constantin

Air pollution is one of the most dangerous forms of pollution, which can have disastrous effects on the environment. For example, pollution with sulfur oxides contributes to the formation of acid rain and nitrogen oxides promote the accumulation of nitrates in the soil. Meteorological factors, such as temperature, significantly influence the levels of pollution and the spread of pollutants in the lower atmosphere. Air pollution meteorology helps to understand how pollutants are emitted and dispersed in the ambient air. Therefore, the purpose of the paper was to monitor for one year the concentrations of NO2 and SO2 in Argeș County and to correlate these data with climatic and urban parameters. The study concludes with a simulation of the dispersion of pollutants emitted by a source, having dimensions and location similar to those of the evacuation tower from CET Bradu, in conditions of a stable atmosphere at various temperatures.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 47
Author(s):  
Maria Mehmood ◽  
Sajid Saleem ◽  
Renato Filjar

The Eyjafjallajökull volcanic ash crisis in 2010 temporarily suspended European air traffic operations, as the 39-day eruption caused widely dispersed ashes to enter the lower atmosphere. In this paper, we assessed the effects of this event on the ionosphere layer and, consequently, on GPS positioning. We collected and analysed the data from four IGS stations, nearest to the volcano, for the month of April 2010. We recorded Vertical Total Electron Content (VTEC) time series, analysed their dynamics, and compared them with the GPS positioning errors of a commercial-grade, un-aided, single-frequency GPS receiver (simulating the response of a mass-market GPS receiver). The geomagnetic indices during the time period show little geomagnetic disturbance, especially during the volcanic event. Our results show an enhancement in ionosphere error by up to 15% during the volcanic ash event and an enhanced variance in GPS position components errors. This study reveals the potential impact of the charged volcanic ash on single-frequency, unaided GPS positioning accuracy in the Adriatic Sea region and establishes a foundation for studying similar events in future.


Sign in / Sign up

Export Citation Format

Share Document