total solar eclipse
Recently Published Documents


TOTAL DOCUMENTS

933
(FIVE YEARS 102)

H-INDEX

27
(FIVE YEARS 3)

MAUSAM ◽  
2021 ◽  
Vol 49 (4) ◽  
pp. 511-520
Author(s):  
A. KASHYAPI ◽  
S. K. SHAHA ◽  
P. M. GULHANE

The Division of Agricultural Meteorology, at Pune of IMD conducted an experiment at Principal Evapotranspiration Observatory, Canning, W.B., during October, 1995 to study the sudden changes in crop environment. The present study revealed that both the crop canopy temperature and observatory temperature at different heights recorded sharp fall of around 2.0°C at 0900 hr (IST) on the eclipse day. The relative humidity (% ) increased sharply at 0900 hr (IST) on the eclipse day within crop canopy as well as within observatory. The soil temperature dropped suddenly at 10 and 20 cm depths of the subsoil and delayed reversal of the soil temperature gradient occurred on the eclipse day; the grass minimum temperature was 21.2°C. Bright sunshine hours reduced by 0.8 on 'the eclipse day as compared to the preceding and succeeding days. The wind during the eclipse period was almost calm between 0900 -0930 hr (IST). The daily total ET recorded on the eclipse day was the minimum. The rate of evapotranspiration was less than half as compared to the other days, as recorded at 0830 hr (IST) (0.2 mm) on the eclipse day, which was closely followed by that observed at 1130 hr (IST) (0.3 mm).


MAUSAM ◽  
2021 ◽  
Vol 49 (4) ◽  
pp. 475-480
Author(s):  
S. ARULRAJ ◽  
T. DHARMARAJ ◽  
S. B. DEBAJE ◽  
A. BAGAVATH SINGH ◽  
K. G. VERNEKAR

A microclimatological tower of 1.6 m height with six instrumented booms at different heights carrying wind speed, temperature and humidity sensors was set up at Robertsgun 24° 42'N, 83°4'E, 3l2m amsl) to study the implication of the total Solar eclipse on the dynamics of Atmospheric Boundary Layer (ABL). Apart from this, the soil temperature and heat flux were also measured during the same time. The observations were taken with a one minute average interval and recorded continuously with the data logger and then transferred to a PC for later use. The data were collected during 2l –26 October 1995. During the eclipse period decrease of surface temperature and soil temperature by 6.2°C and 3.5°C respectively and increase of humidity by nearly 60% were observed. Due to the decrease in velocity fluctuations, the mean wind speed showed the sharp increase compared to other days. The setting of stable atmosphere before the total solar eclipse was observed.


MAUSAM ◽  
2021 ◽  
Vol 60 (1) ◽  
pp. 103-106
Author(s):  
SUKUMAR LALA ◽  
SEEMA SHARMA ◽  
SWATI CHAKRABARTI ◽  
NABAJIT CHAKRAVARTY

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahesh N. Shrivastava ◽  
Ajeet Kumar Maurya ◽  
Kondapalli Niranjan Kumar

AbstractThe influence of the South American total solar eclipse of 14th December 2020 on the ionosphere is studied by using the continuous Chilean Global Positioning System (GPS) sites across the totality path. The totality path with eclipse magnitude 1.012 passed through the Villarrica (Lon. 72.2308°W and Lat. 39.2820°S) in south Chile during 14:41:02.0 UTC to 17:30:58.1 UTC and maximum occurred ~ 16:03:49.5 UTC around the local noon. The vertical total electron content (VTEC) derived by GPS sites across the totality path for two PRN’s 29 and 31 show almost 20–40% of reduction with reference to ambient values. The percentage reduction was maximum close to totality site and decreases smoothly on both sides of totality sites. Interestingly, the atmospheric gravity waves (AGWs) with a period ~ 30–60 min obtained using wavelet analysis of VTEC timeseries show the presence of strong AGWs at the GPS sites located north of the totality line. But the AGWs do not show any significant effect on the VTEC values to these sites. Our analysis suggests, possibly an interplay between variability in the background plasma density and eclipse-generated AGWs induced plasma density perturbation could explain the observations.


2021 ◽  
Vol 03 (03) ◽  
pp. 2150009
Author(s):  
Gillian Foo ◽  
Jhoon Yong Tan ◽  
Edmund Yuen ◽  
Laurentcia Arlany ◽  
A. Yang ◽  
...  

As encouraged by the interesting paper “Solar eclipses as a teaching opportunity in relativity” by Overduin et al.,awe made measurements of the angular deflections of neighboring stars during the 9 March 2016 total solar eclipse as imaged by National University of Singapore (NUS) students, to verify a result of general relativity. In this project, we used these images and measured the stars’ pixel positions and transformed them to equatorial coordinates using a similar approach to Overduin et al., with a few modifications. Instead of solving to determine the pixel scale and rotation, we performed a plate solution using the software AstroImageJ which enables accounting for the image’s higher order distortion. This data is found in the image’s Flexible Image Transport System (FITS) header. Image star pair separations were then compared to their database separations after determining how the individual deflections affect angular separation. Our experimental results have large uncertainties and were deemed imprecise to confirm the effects of gravitational light deflection. We include a detailed analysis and discussion on this educational project.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5352
Author(s):  
Armando Castillejo-Cuberos ◽  
José Cardemil ◽  
Rodrigo Escobar

Solar eclipses are astronomic phenomena in which the Earth’s moon transits between the planet and the Sun, projecting a shadow onto the planet’s surface. As solar power installed capacity increases, detailed studies of this region-wide phenomenon’s effect in irradiance is of interest; however, the literature mainly reports its effects on localized scales. A measurement campaign spanning over 1400 km was pursued for the 2 July 2019 total solar eclipse in Chile, to register the event and establish a modeling framework to assess solar eclipse effects in irradiance over wide regional scales. This work describes the event and presents an estimation framework to decompose atmospheric and eclipse effects on irradiance. An analytical model was applied to study irradiance attenuation throughout the Chilean mainland territory, using satellite-derived and astronomical data as inputs compared to ground measurements in eight stations. Results showed good agreement between model and observations, with Mean Bias Errors of −0.008 to 0.98 W/m2 for Global Horizontal Irradiance and −0.004 to −4.664 W/m2 for Direct Normal Irradiance, with Normalized Root Mean Squared Errors of 0.7–5.8% and 1.4–12.2%, respectively. Energy losses due to obscuration corresponded between 20–40% for Global Horizontal Irradiance and 25–50% for Direct Normal Irradiance over Chilean territory.


Sign in / Sign up

Export Citation Format

Share Document