scholarly journals A LOCAL REFINEMENT METHOD OF THE MAC MESH SYSTEMS : The three-dimensional Multi-Mesh method

Author(s):  
Takashi KURABUCHI ◽  
Motoyasu KAMATA
2013 ◽  
Vol 791-793 ◽  
pp. 1073-1076
Author(s):  
Ming Yang ◽  
Shi Ping Zhao ◽  
Han Ping Wang ◽  
Lin Peng Wang ◽  
Shao Zhu Wang

The unsteady hydrodynamic accurate calculation is the premise of submerged body trajectory design and maneuverability design. Calculation model of submerged body unsteady hydrodynamic with the movement in the longitudinal plane was established, which based on unsteady three-dimensional incompressible fluid dynamics theory. Variable speed translational and variable angular velocity of the pitching motion in the longitudinal plane of submerged body was achieved by dynamic mesh method. The unsteady hydrodynamic could be obtained by model under the premise of good quality grid by the results. Modeling methods can learn from other similar problems, which has engineering application value.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fubiao Lin ◽  
Junying Cao ◽  
Zhixin Liu

In this paper, an efficient multiscale finite element method via local defect-correction technique is developed. This method is used to solve the Schrödinger eigenvalue problem with three-dimensional domain. First, this paper considers a three-dimensional bounded spherical region, which is the truncation of a three-dimensional unbounded region. Using polar coordinate transformation, we successfully transform the three-dimensional problem into a series of one-dimensional eigenvalue problems. These one-dimensional eigenvalue problems also bring singularity. Second, using local refinement technique, we establish a new multiscale finite element discretization method. The scheme can correct the defects repeatedly on the local refinement grid, which can solve the singularity problem efficiently. Finally, the error estimates of eigenvalues and eigenfunctions are also proved. Numerical examples show that our numerical method can significantly improve the accuracy of eigenvalues.


2004 ◽  
Vol 28 (5) ◽  
pp. 425-441 ◽  
Author(s):  
Toshimitsu Fujisawa ◽  
Satoshi Ito ◽  
Masakazu Inaba ◽  
Genki Yagawa

2013 ◽  
Vol 49 (1) ◽  
pp. 27-31 ◽  
Author(s):  
Z. Marinkovic-Stanojevica ◽  
L. Mancic ◽  
T. Sreckovic ◽  
B. Stojanovic

A powder mixture of Bi2O3 and Fe2O3 was mechanically treated in a planetary ball mill in an air from 30 to 720 minutes. It was shown that the mechanochemical formation of BiFeO3 (BFO) phase was initiated after 60 min and its amount increased gradually with increasing milling time. A detailed XRPD structural analysis is realized by Rietveld?s structure refinement method. The resulting lattice parameters, relative phase abundances, crystallite sizes and crystal lattice microstrains were determined as a function of milling time. Microstructural analysis showed a little difference in morphology of obtained powders. The primary particles, irregular in shape and smaller than 400 nm are observed clearly, although they have assembled together to form agglomerates with varying size and morphology. Dense BFO ceramics were prepared by conventional solid-state reaction at the temperature of 810?C for 1h followed immediately by quenching process. [Projekat Ministarstva nauke Republike Srbije, br. III45007: Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing


2017 ◽  
Vol 112 (10) ◽  
pp. 1402-1438 ◽  
Author(s):  
Shintaro Yamasaki ◽  
Seiichiro Yamanaka ◽  
Kikuo Fujita

Sign in / Sign up

Export Citation Format

Share Document