Geologic characteristics of carbonate-hosted gold deposits associated with Tertiary igneous rocks, west-central, Utah

1988 ◽  
Author(s):  
David R. Zimbelman ◽  
Connie J. Nutt ◽  
David L. Campbell
2020 ◽  
pp. 355-373
Author(s):  
Karen D. Kelley ◽  
Eric P. Jensen ◽  
Jason S. Rampe ◽  
Doug White

Abstract Cripple Creek is among the largest epithermal districts in the world, with more than 800 metric tons (t) Au (>26.4 Moz). The ores are associated spatially, temporally, and genetically with ~34 to 28 Ma alkaline igneous rocks that were emplaced into an 18-km2 diatreme complex and surrounding Proterozoic rocks. Gold occurs in high-grade veins, as bulk tonnage relatively low-grade ores, and in hydrothermal breccias. Pervasive alteration in the form of potassic metasomatism is extensive and is intimately associated with gold mineralization. Based on dating of intrusions and molybdenite and gangue minerals (primarily using 40Ar/39Ar and Re-Os techniques), the region experienced a protracted but intermittent history of magmatism (over a period of at least 5 m.y.) and hydrothermal activity (intermittent over the final ~3 m.y. of magmatic activity). Key factors that likely played a role in the size and grade of the deposit were (1) the generation of alkaline magmas during a transition between subduction and extension that tapped a chemically enriched mantle source; (2) a long history of structural preparation, beginning in the Proterozoic, which created deep-seated structures to allow the magmas and ore fluids to reach shallow levels in the crust, and which produced a fracture network that increased permeability; and (3) an efficient hydrothermal system, including effective gold transport mechanisms, and multiple over-printed hydrothermal events.


2021 ◽  
Vol 12 (2) ◽  
pp. 392-408
Author(s):  
Yu. A. Kalinin ◽  
K. R. Kovalev ◽  
A. N. Serdyukov ◽  
A. S. Gladkov ◽  
V. P. Sukhorukov ◽  
...  

We present new age constraints for igneous rocks and ore-metasomatic formations of the gold deposits in the Akzhal-Boko-Ashalin ore zone. In terms of their ore formation, these deposits correspond mainly to the orogenic type, which generally reflects specific metallogeny of the West Kalba gold-bearing belt in East Kazakhstan. Gold-quartz veins and mineralized zones of the gold-sulphide formation are confined to fractures feathering regional NW-striking and sublatitudinal faults. Their common features include the following: gold-bearing veinlet-disseminated pyrite-arsenopyrite ores that are localized in carbonaceous-sandy-schist and turbidite strata of different ages; structural-tectonic control of mineralization, numerous dikes of medium-basic compositions in ore-control zones; and the presence of post-orogenic heterochronous granite-granodiorite rocks, although their relation to gold-ore mineralization is not obvious. Igneous rocks of the study area have similar ages in a narrow range from 309.1±4.1 to 298.7±3.2 Ma, which is generally consistent with the previously determined age of granitoid massifs of gold-ore fields in East Kazakhstan. A younger age (292.9±1.3 to 296.7±1.6 Ma) is estimated for felsic rocks of the dyke complex. For the ore mineralization, the 40Ar/39Ar dating of sericite from near-ore metasomatites yields two age intervals, 300.4±3.4 Ma and 279.8±4.3 Ma. A gap between of the ages of the ore mineralization and the igneous rocks is almost 20 Ma, which may indicate that the processes of ore formation in the ore field continued in an impulse-like pattern for at least 20 Ma. Nevertheless, this confirms a relationship between the hydrothermal activity in the study area and the formation and evolution of silicic igneous rocks of the given age interval, which belong to the Kunush complex, according to previous studies. This interpretation is supported by reconstructed tectonic paleostress fields, showing that directions of the main normal stress axes changed during the ore mineralization stage, which is why the ore bodies significantly differ in their orientations. The above-mentioned data are the first age constraints for the study area. Additional age determinations are needed to further improve understanding of the chronology of ore-forming processes. Actually, all the features characterizing the gold mineralization of the Akzhal, Ashalin and Dauba ore fields, including the data on lithology, stratigraphy, structural tectonics, magmatism, isotope geochronology, mineralogy and geochemistry, can be used as criteria when searching for similar ore fields in East Kazakhstan.


Sign in / Sign up

Export Citation Format

Share Document