scholarly journals Groundwater quality in the Columbia Plateau, Snake River Plain, and Oahu basaltic-rock and basin-fill aquifers in the Northwestern United States and Hawaii, 1992-2010

Author(s):  
Lonna M. Frans ◽  
Michael G. Rupert ◽  
Charles D. Hunt ◽  
Kenneth D. Skinner
Geophysics ◽  
1991 ◽  
Vol 56 (9) ◽  
pp. 1441-1455 ◽  
Author(s):  
J. Pujol ◽  
S. Smithson

Seismic wave attenuation in the Columbia Plateau basalts and Snake River Plain volcanics was analyzed using vertical seismic profiling (VSP) data. The computation of attenuation coefficients is based on fitting a straight line to the logarithm of amplitude ratios computed for fixed values of frequency and variable depth. This approach does not require any assumptions on the dependence of Q on frequency. For the Columbia Plateau basalts, the attenuation coefficients obtained from the field data are smaller than those computed from the synthetic VSP generated using the sonic and density logs, indicating that the observed attenuation is related to scattering effects and is substantially larger than the intrinsic attenuation of basalt. Therefore, it is concluded that only a lower bound for Q can be established, in agreement with recent findings by other authors. The effective attenuation of seismic energy in basalts (about [Formula: see text] for the peak frequency) is comparable to the effective attenuation observed in sedimentary rocks (between [Formula: see text] and [Formula: see text]). Results from two VSPs recorded in the Snake River Plain volcanics using air gun and vibrator sources show some frequency‐dependent effects. The depth range analyzed covers two different lithologic units (rhyolitic rocks with interbedded volcanic sediments above more homogeneous rhyodacitic rocks). The air gun energy (with a peak frequency near 15 Hz) clearly detects a difference in the attenuating properties of the two types of rocks. The vibrator energy, on the other hand, also detects this difference, but only for the lower frequencies. For frequencies near the peak frequency (31 Hz), attenuation is almost the same in the two units. The difference in attenuation for the two types of rocks is real and cannot be explained as processing artifacts, because it can be observed for both sources by analyzing the amplitude decay in the time domain. The peak‐frequency attenuation coefficients for the lower section are [Formula: see text] and [Formula: see text] for the vibrator and air gun sources, respectively. For the upper section, the corresponding values are [Formula: see text] and [Formula: see text]. The difference in attenuation implied by the last two coefficients is probably not real, because the decay of energy in the time domain for the two sources is much closer to each other. The Columbia Plateau and Snake River Plain VSPs show that the poor quality of reflection data commonly associated with volcanic rocks cannot be explained by unusually high attenuation.


2020 ◽  
Vol 222 (2) ◽  
pp. 754-768
Author(s):  
Frederik J Allstädt ◽  
Erwin Appel ◽  
Wolfgang Rösler ◽  
Alexander A Prokopenko ◽  
Udo Neumann ◽  
...  

SUMMARY Remagnetization is an important issue in palaeomagnetism. Here, we discuss an extraordinarily thick (∼74 m) dual-polarity transition zone between the Gauss and Matuyama Chrons. The studied succession is from a drill core through lacustrine sediments of palaeo-Lake Idaho (Snake River Plain, NW United States of America) that are intercalated with basalt units. We identified detrital Ti-rich titanomagnetite and magnetite in lamellar exsolutions as the main carriers of a primary remanence, likely derived from the basalts that erupted in the Snake River Plain. Stepwise thermal demagnetization revealed a single-component remanent magnetization with reversed and normal polarities above and below the transition zone, respectively. Based on rock-magnetic results, microscopic observations, and previously known events in the evolution of palaeo-Lake Idaho, the reversed-polarity component in the transition zone represents a secondary chemical remanent magnetization caused by magnetic mineral alteration or partial neo-formation of magnetite, in association with strong depletion of the primary detrital magnetic minerals that affected a wide depth range below the level where the remagnetization event occurred. This remagnetization event was most likely related to lake-level lowering and partial desiccation of palaeo-Lake Idaho. Understanding the nature and origin of the remagnetization allows to identify the polarity boundary in the unusual case of a secondary magnetization with reversed polarity produced downward in a sequence to an extraordinary large depth. Based on available age information, the observed reversal represents the Gauss/Matuyama boundary, which provides an important age constraint for palaeoclimatic interpretation of the succession.


Sign in / Sign up

Export Citation Format

Share Document