remanent magnetization
Recently Published Documents


TOTAL DOCUMENTS

1061
(FIVE YEARS 128)

H-INDEX

54
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Samuel Courville ◽  
Joseph O'Rourke ◽  
Julie Castillo-Rogez ◽  
Roger Fu ◽  
Rona Oran ◽  
...  

Abstract The solar nebula carried a strong magnetic field that had a stable intensity and direction for periods of a thousand years or more1. The solar nebular field may have produced post-accretional magnetization in at least two groups of meteorites, CM and CV chondrites [1–3], which originated from planetesimals that may have underwent aqueous alteration before gas in the solar nebula dissipated [1,3]. Magnetic minerals produced during aqueous alteration, such as magnetite and pyrrhotite [4], could acquire a chemical remanent magnetization from that nebular field [3]. However, many questions about the size, composition, formation time, and, ultimately, identity of the parent bodies that produced magnetized CM and CV chondrites await answers—including whether a parent body might exhibit a detectable magnetic field today. Here, we use thermal evolution models to show that planetesimals that formed between a few Myr after CAIs and ~1 Myr before the nebular gas dissipated could acquire from the nebular field, and retain until today, a chemical remanent magnetization throughout nearly their entire volume. Hence, in-situ magnetometer measurements of C-type asteroids could help link magnetized asteroids to magnetized meteorites. Specifically, a future mission could search for a magnetic field as part of testing the hypothesis that 2 Pallas is the parent body of the CM chondrites [5]. Overall, large carbonaceous asteroids might record ancient magnetic fields in magnetic remanence that produces strong modern magnetic fields, even without a metallic core that once hosted a dynamo.


2021 ◽  
Author(s):  
◽  
Emma Watson

<p>Metamorphic core complexes (MCC) are widespread in extensional tectonic environments. Despite their significant contribution to extension in rifts, little is known about the origin and evolution of metamorphic core complexes. Particular controversy regards the origin of the typically shallowly dipping (<30°) detachment fault that bounds the footwall core of metamorphic rocks. According to Andersonian faulting theory, normal faults should initiate at a dip of ~60° and frictionally lock up and stop slipping at dips of <30°. One possible solution to this problem is a rolling hinge evolution for the fault. In this scenario the fault initiates at a steep dip of ~60° and evolves to a shallower dip during slip due to the rebound of the footwall in response to progressive unloading as the hangingwall is removed (Wernicke & Axen, 1988; Buck, 1988; Hamilton, 1988). Large rotations of the footwall, indicative of rolling hinge style deformation, may conceivably be measured by comparing the remanent paleomagnetic vector of the footwall rocks with the expected direction of the geomagnetic field at the site where the remanent magnetization was acquired. Using these techniques, large rotations of footwall rocks consistent with rolling hinge style deformation have been demonstrated for the footwalls of oceanic core complexes (Garcés & Gee, 2006; Zhao & Tominaga, 2009; Morris et al., 2009; MacLeod et al., 2011), but not for continental MCCs.  In this study we attempt to test, using the remanent magnetization of the footwall rocks, whether rolling hinge style rotations have affected the footwall of the Mai’iu fault, Papua New Guinea. The Mai’iu fault, located in the continental Woodlark Rift, is a rapidly slipping (~1 cm/yr) (Wallace et al., 2014; Webber et al., 2018), shallowly-dipping (<22° at the surface) normal fault (Spencer, 2010; Little et al., 2019) responsible for the Pliocene-Recent exhumation of the domed Suckling-Dayman MCC, which is comprised mostly of Goropu Metabasalt.  The remanent magnetization of forty-four samples of footwall Goropu Metabasalt were measured for this study. Close to the fault trace (<1.5 km) a moderately inclined, northerly trending, normal component of magnetic remanence is preserved (Dec: 351.1°, Inc: -35.7°, α₉₅: 6.8°, N= 18 sites). Farther to the south, and up-dip of the fault trace (>1.5 km to 10 km from the fault trace) a normal component is observed in the lower blocking temperature range (Dec: 347.2°, Inc: -41.7°, α₉₅: 9.4°, N= 7 sites) (up to 300-400°C) that we interpret to be equivalent to the normal component present in samples closer to the fault trace. The maximum (un)blocking temperature to which the normal component is carried decreases with increasing distance up-dip and away from the fault trace. In the higher blocking temperature range a southerly trending, reversed component of magnetization is preserved that is more steeply inclined than the component mentioned above (Dec: 177.2°, Inc: 57.1°, α₉₅: 7.3°, N= 8 sites). We interpret the moderately-inclined normal component in both regions to be a recent component of magnetization to have been acquired during the exhumation of the Goropu Metabasalt over the last 780,000 years (Brunhes chron). The origin of the older, reversed component is less clear; however, we prefer the interpretation that this component is also an exhumational overprint that was acquired between 2,600,000-780,000 years ago during the Matuyama chron.  Comparison of the direction of the average normal component of both Group 1 and Group 2 samples (Dec: 350.6°, Inc: -37.1°, α₉₅: 5.4°, N= 25 sites) with the expected direction of the geomagnetic field at the paleomagnetic sampling locality indicates that 23.9 ± 2.6° (1σ) of back-rotation about a sub-horizontal axis sub-parallel to fault strike has affected the footwall of the Mai’iu fault. Taking into account the known dip of the fault at the surface of <20-22°, this rotation value implies an original fault dip at depth of 41.3-48.5° that is inherited from a paleo-subduction zone. This result is remarkably consistent with other estimates of the original fault dip: for example, geologically observed fault-bedding cut-off angles on an upper plate imbricate (rider) block imply an original fault dip of ~40-49° (Little et al., 2019). Also, microseismicity between 10-25 km depth implies a modern dip there of 30-40° (Eilon et al., 2015; Abers et al., 2016).  This study is the first of its kind to use paleomagnetism to demonstrate that substantial rolling hinge style rotations have affected the footwall of a continental MCC.</p>


2021 ◽  
Author(s):  
◽  
Emma Watson

<p>Metamorphic core complexes (MCC) are widespread in extensional tectonic environments. Despite their significant contribution to extension in rifts, little is known about the origin and evolution of metamorphic core complexes. Particular controversy regards the origin of the typically shallowly dipping (<30°) detachment fault that bounds the footwall core of metamorphic rocks. According to Andersonian faulting theory, normal faults should initiate at a dip of ~60° and frictionally lock up and stop slipping at dips of <30°. One possible solution to this problem is a rolling hinge evolution for the fault. In this scenario the fault initiates at a steep dip of ~60° and evolves to a shallower dip during slip due to the rebound of the footwall in response to progressive unloading as the hangingwall is removed (Wernicke & Axen, 1988; Buck, 1988; Hamilton, 1988). Large rotations of the footwall, indicative of rolling hinge style deformation, may conceivably be measured by comparing the remanent paleomagnetic vector of the footwall rocks with the expected direction of the geomagnetic field at the site where the remanent magnetization was acquired. Using these techniques, large rotations of footwall rocks consistent with rolling hinge style deformation have been demonstrated for the footwalls of oceanic core complexes (Garcés & Gee, 2006; Zhao & Tominaga, 2009; Morris et al., 2009; MacLeod et al., 2011), but not for continental MCCs.  In this study we attempt to test, using the remanent magnetization of the footwall rocks, whether rolling hinge style rotations have affected the footwall of the Mai’iu fault, Papua New Guinea. The Mai’iu fault, located in the continental Woodlark Rift, is a rapidly slipping (~1 cm/yr) (Wallace et al., 2014; Webber et al., 2018), shallowly-dipping (<22° at the surface) normal fault (Spencer, 2010; Little et al., 2019) responsible for the Pliocene-Recent exhumation of the domed Suckling-Dayman MCC, which is comprised mostly of Goropu Metabasalt.  The remanent magnetization of forty-four samples of footwall Goropu Metabasalt were measured for this study. Close to the fault trace (<1.5 km) a moderately inclined, northerly trending, normal component of magnetic remanence is preserved (Dec: 351.1°, Inc: -35.7°, α₉₅: 6.8°, N= 18 sites). Farther to the south, and up-dip of the fault trace (>1.5 km to 10 km from the fault trace) a normal component is observed in the lower blocking temperature range (Dec: 347.2°, Inc: -41.7°, α₉₅: 9.4°, N= 7 sites) (up to 300-400°C) that we interpret to be equivalent to the normal component present in samples closer to the fault trace. The maximum (un)blocking temperature to which the normal component is carried decreases with increasing distance up-dip and away from the fault trace. In the higher blocking temperature range a southerly trending, reversed component of magnetization is preserved that is more steeply inclined than the component mentioned above (Dec: 177.2°, Inc: 57.1°, α₉₅: 7.3°, N= 8 sites). We interpret the moderately-inclined normal component in both regions to be a recent component of magnetization to have been acquired during the exhumation of the Goropu Metabasalt over the last 780,000 years (Brunhes chron). The origin of the older, reversed component is less clear; however, we prefer the interpretation that this component is also an exhumational overprint that was acquired between 2,600,000-780,000 years ago during the Matuyama chron.  Comparison of the direction of the average normal component of both Group 1 and Group 2 samples (Dec: 350.6°, Inc: -37.1°, α₉₅: 5.4°, N= 25 sites) with the expected direction of the geomagnetic field at the paleomagnetic sampling locality indicates that 23.9 ± 2.6° (1σ) of back-rotation about a sub-horizontal axis sub-parallel to fault strike has affected the footwall of the Mai’iu fault. Taking into account the known dip of the fault at the surface of <20-22°, this rotation value implies an original fault dip at depth of 41.3-48.5° that is inherited from a paleo-subduction zone. This result is remarkably consistent with other estimates of the original fault dip: for example, geologically observed fault-bedding cut-off angles on an upper plate imbricate (rider) block imply an original fault dip of ~40-49° (Little et al., 2019). Also, microseismicity between 10-25 km depth implies a modern dip there of 30-40° (Eilon et al., 2015; Abers et al., 2016).  This study is the first of its kind to use paleomagnetism to demonstrate that substantial rolling hinge style rotations have affected the footwall of a continental MCC.</p>


Geophysics ◽  
2021 ◽  
pp. 1-66
Author(s):  
Richard S. Smith ◽  
Eric A. Roots ◽  
Rajesh Vavavur

The dipolar character of magnetic data means that there is a high and a low associated with each source. The relative positions and sizes of these highs and lows, varies depending on the magnetic latitude or the inclination of the Earth’s magnetic field. One method for dealing with this complexity is to transform the data to what would collected if the inclination were vertical (as at the magnetic pole); a process that is unstable at low magnetic latitudes. Unfortunately, remanent magnetization adversely impacts the success of this transformation. A second approach is to calculate the analytic-signal amplitude (ASA) of the data, which creates a single positive feature for each source or edge, with the shape being only weakly dependent on the inclination and the presence of remanent magnetization. The ASA anomalies can appear to be relatively broad, so features sometimes merge together on map views of the ASA. A subsequent transformation of the ASA using an appropriate transforming tilt angle can generate a magnetic field of a body that is at the pole and has a vertical dip. The transformation is exact for contacts when calculated from the first-order ASA, but the sign of the transformed data can be incorrect depending on whether you are over one edge or the other edge of a discrete source body. Another, approximate transformation of the zeroth-order ASA does not have this issue and gives good results on synthetic data provided that any noise is handled appropriately. The resulting maps outline the magnetic source bodies and have amplitudes proportional to an apparent magnetic susceptibility. On field data from Black Hill, South Australia, the approximate transformation generates an image that is simple to interpret and enhances some features less obvious on other enhancements of the data.


Author(s):  
Shreya Kanakiya ◽  
Gillian M. Turner ◽  
Michael C. Rowe ◽  
Ludmila Adam ◽  
Jan M. Lindsay

2021 ◽  
Vol 57 (6) ◽  
pp. 913-926
Author(s):  
S. K. Gribov ◽  
V. P. Shcherbakov ◽  
V. A. Tsel’movich ◽  
N. A. Aphinogenova

Abstract—The experiments have been carried out on the acquisition of thermochemical remanent magnetization (TCRM) in basalt samples containing titanomagnetite (TM) with the Curie temperature Тс ~200°C by their rapid heating to maximum temperatures Т* from 450 to 530°C followed by slow cooling in the laboratory magnetic field Blab. At different stages of the preliminary thermal treatment of the initial samples, a set of magnetomineralogical studies including electron microscopy, X-ray diffraction and thermomagnetic analyzes, and measurements of magnetic hysteresis parameters were performed. It is shown that as early as the very beginning of the cooling process, all samples demonstrate explosive growth of TCRM corresponding to the stage of rapid single-phase oxidation of the initial titanomagnetite fraction of basalt, and that TCRM is acquired by the increase of Тс and volume of single-phase oxidized parts of TM grains as well as by the growth of the volume of Ti-depleted (relative to the initial TM) cells of microstructure of the subsequent oxidative exsolution. The Arai–Nagata diagrams for the samples carrying TCRM have a form of a broken line consisting of two linear segments. The low-temperature interval T < Т* corresponds to a mixture of thermochemical and thermoremanent (TRM) magnetizations and gives a slightly overestimated Blab because of the effect of a low cooling rate during the acquisition of TCRM and TRM. The high-temperature interval corresponds to pure TCRM and the Blab strength determined from this interval is underestimated by 20–27%. It is recommended to reject samples whose Araii–Nagata diagram has two or more linear segments against the background single-component NRM.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Matic Korent ◽  
Marko Soderžnik ◽  
Urška Ročnik ◽  
Sandra Drev ◽  
Kristina Žužek Rožman ◽  
...  

In this work, we present a newly developed, economically efficient method for processing rare-earth Nd-Fe-B magnets based on spark plasma sintering. It makes us possible to retain the technologically essential properties of the produced magnet by consuming about 30% of the energy as compared to the conventional SPS process. A magnet with anisotropic microstructure was fabricated from MQU F commercial ribbons by low energy consumption (0.37 MJ) during the deformation process and compared to the conventionally prepared hot-deformed magnet, which consumed 3-times more energy (1.2 MJ). Both magnets were post-annealed at 650 °C for 120 min in a vacuum. After the postannealing process, the low-energy processing (LEP) hot-deformed magnet showed a coercivity of 1327 kAm-1, and remanent magnetization of 1.27 T. In comparison, the highenergy processing (HEP) hot-deformed magnet had a coercivity of 1337 kAm-1 and a remanent magnetization of 1.31 T. Complete microstructural characterization and detailed statistical analyses revealed a better texture orientation for the HEP hot-deformed magnet processed by high energy consumption, which is the main reason for the difference in remanent magnetization between the two hot-deformed magnets. The results show that, although the LEP hot-deformed magnet was processed by three times lower energy consumption than in a typical hot-deformation process, the maximum energy product is only 8 % lower than the maximum energy product of a HEP hot-deformed magnet.


2021 ◽  
Author(s):  
Tina Wunderlich ◽  
Raphael Kahn ◽  
Norbert R. Nowaczyk ◽  
Natalie Pickartz ◽  
Detlef Schulte‐Kortnack ◽  
...  

2021 ◽  
Author(s):  
Yingchao Xu ◽  
Zhenyu Yang ◽  
et al.

Table S1: The characteristic remanent magnetization for the samples of Emeishan basalts from the Binchuan area; Table S2: SHRIMP zircon U-Pb analytical data for sample DY65-7 of this study.


Sign in / Sign up

Export Citation Format

Share Document