scholarly journals Water quality of lakes in Voyageurs National Park, northern Minnesota, 1999

2000 ◽  
Koedoe ◽  
1999 ◽  
Vol 42 (1) ◽  
Author(s):  
V. Wepener ◽  
J.H.J. Van Vuren ◽  
H.H. Du Preez

Large sets of water quality data can leave water quality managers and decision-makers totally overwhelmed. In order to convey the interpretation of the data in a simplified and understandable manner, the water quality results from bi-monthly surveys undertaken at seven different sampling sites in the Letaba, Olifants, and Selati rivers over a two year period (February 1990 to April 1992) were reduced to index values, using a water quality index. The water quality index (Aquatic Toxicity Index or ATI) revealed spatial and temporal trends. The higher index values, recorded for the sampling sites towards the eastern part of the Kruger National Park (KNP), revealed that the water quality was better than the quality measured in the Olifants River on the western bound-ary. The lowest index values were calculated for the Selati River, with index values consistently below 50. Index values indicate that the water quality in the Selati River was unsuitable for supporting normal physiological processes in fish. The water quality of the Selati River had an immediate impact on the water quality of the Olifants River directly below the confluence. Lower index values recorded at sites further downstream was also attributed to the influence of the Selati River since there are no known point sources of contaminants within the boundaries of the KNP. The index scores also elucidated temporal trends with lower scores evident during winter months. This was due to reduced flow in the Olifants River and a greater contribution of contaminated water from the Selati River. Index values increased following the first seasonal rains due to a dilution effect. Very low index values were recorded at certain sites during flood periods due to increased turbidity, reduced oxygen, and increased metal concentrations.


Author(s):  
Woodruff Miller

This study is the continuation of an evaluation of the trophic state of lakes located in Grand Teton National Park, Wyoming. The original 1995 study was motivated by concern that the water quality of the lakes within the Park may be declining due to increased human usage over the past several years. A trophic state evaluation, featuring nutrient and chlorophyll-a analyses, was chosen because it is believed to be a sound indicator of the lakes' overall water quality. In this 1996 study, a thorough evaluation was made of Jackson Lake. This summary is taken from the complete 100 page report which is available from Woodruff Miller at Brigham Young University or Hank Harlow at the University of Wyoming. In most cases water samples were taken four times during the summer of 1996, in June, July, August, and October. Jackson Lake was sampled at eight different locations on thesurface and at depths near the bottom. The lake inlet and outlet were also sampled four times. Jackson Lake was sampled from a motor boat which also provided a means to measure the lake transparency and depth. The chlorophyll-a and nutrient concentrations were analyzed by the Utah State Health Department, Division of Laboratory Services. Jackson Lake was evaluated using the models of Carlson, Vollenweider, and Larsen­Mercier. The nature of the Larsen-Mercier and Vollenweider models, based on system inflow and outflow data, is such that they yield one trophic state assessment of the lake per inflow and outflow sample set. The Carlson Trophic State Indices (TSI), on the other hand, are based on in situ properties of the water at any point in the lake. Consequently, while there are four Vollenweider and four Larsen-Mercier evaluations for Jackson Lake, individual Carlson evaluations were made for the eight sample sites around the lake at the surface and at depth, and an evaluation for the lake as a whole was constructed using averages taken from the site evaluations. This allowed us to examine the relative water quality of different portions of the lake at different time periods.


Hydrobiologia ◽  
1982 ◽  
Vol 89 (2) ◽  
pp. 97-115 ◽  
Author(s):  
D. G. Silsbee ◽  
G. L. Larson

Author(s):  
Agnieszka E. Ławniczak

AbstractThis paper evaluates water quality and ecological status of lakes located in the Wielkopolska National Park and its buffer zone. Changes in water quality were analyzed from 1974 to 2012 in order to assess the effectiveness of the protection strategies implemented on the studied lakes since 1957, i.e. the date when the park was established. The ecological status of the lakes was assessed with the use of macrophytes as well as hydromorphological and physicochemical analyses performed in 2012. Changes in water quality of the studied lakes within the last 40 years were analyzed based on available published and unpublished data, as well as field studies. All water bodies are characterized by advanced eutrophication. However, evaluation of the ecological status showed good status of the charophyte-dominated lakes, i.e. Lake Wielkowiejskie and Lake Budzyńskie. Lack of significant differences in physicochemical water qualities between the park and its buffer zone indicated that measures implemented to protect the water, particularly in the park, are ineffective. This study shows that more radical conservation measures are necessary to protect and improve the water quality, not only in WPN and its buffer zone but also in the whole catchment area.


Author(s):  
Hoàng Đình Trung

Aquatic insects have been used to evaluate the water quality of Bach Ma area in Thua Thien Hue province through the BMWP scoring system for Vietnam and ASPT indices. The study was carried out between March and December of 2010. As a result, 27 families of aquatic insects belonging to 3 orders (Ephemeroptera, Plecoptera and Trichoptera) were recognised. Among these, 18 families belong to the list of the BMWP Viet scoring system. The data analysis shows that the BMWPViet scores are relatively high, the biotic indices (ASPT) range from 7.10 to 8.71. Aquatic insects have been used as biotic indices to classify the water quality as fairly clean (Oligosaprobe) or very clean. This evaluation corresponds to the water quality assessed by phisio-chemical methods. Keywords: Aquatic insects, Ephemeroptera, Trichoptera, Plecoptera, Bach Ma National Park, ASPT biotic index, water quality.


Sign in / Sign up

Export Citation Format

Share Document