scholarly journals Effects of combined-sewer overflows and urban runoff on the water quality of Fall Creek, Indianapolis, Indiana

1995 ◽  
Author(s):  
Jason R. Vogel ◽  
Jill D. Frankforter ◽  
David L. Rus ◽  
Christopher M. Hobza ◽  
Matthew T. Moser

1997 ◽  
Vol 36 (8-9) ◽  
pp. 195-199 ◽  
Author(s):  
R. Mulliss ◽  
D. M. Revitt ◽  
R. B. E. Shutes

The impacts of combined sewer overflows and surface water outfalls on receiving water quality are assessed by comparing dry weather flow and storm event concentrations of dissolved oxygen, BOD, total and unionised ammonia, pH, dissolved copper and total zinc with those recommended by the River Ecosystem classification guidelines for freshwaters in the UK. The deteriorating conditions during wet weather are identified by water quality falling below the RE2 category for all monitored pollutants, other than dissolved copper, and reaching the most grossly polluted condition for BOD and total ammonia.


1990 ◽  
Vol 22 (10-11) ◽  
pp. 163-171 ◽  
Author(s):  
J. Seager ◽  
R. G. Abrahams

Intermittent discharges of storm sewage from combined sewer overflows continue to be one of the principal causes of poor water quality in many urban rivers in the UK. Despite the persistent nature of this problem, very little attention has been given to the study of how discharges of varying magnitude, duration and frequency affect the ecological quality of receiving waters. This information is of critical importance for deriving meaningful water quality criteria for the control of intermittent pollution. This paper describes the results of a study which has been carried out on Pendle Water, a river which flows through the urban catchment of Burnley, Lancashire, UK. Both the chemical and biological quality of Pendle Water are adversely affected by storm sewage discharges during heavy rainfall events. The ecological investigation has been primarily concerned with impact of these episodic discharges on benthic invertebrate communities and physiological responses in fish. Quantitative sampling of macroinvertebrates has indicated that storm sewage discharges may have a significant impact on the structure and diversity of benthic communities in receiving waters. Physico-chemical properties of habitats appear to be altered in a way which tends to favour the proliferation of certain pollution-tolerant species and decrease the abundance of taxa intolerant of organic pollution. Insitu bioassays, including the WRc Mark III Fish Monitor, have been deployed to investigate physiological responses to storm events of different magnitude, duration and frequency. Results are discussed in relation to their application in the field validation of proposed water quality criteria for the control of intermittent pollution from combined sewer overflows.


2010 ◽  
Vol 61 (1) ◽  
pp. 207-215 ◽  
Author(s):  
A. Casadio ◽  
M. Maglionico ◽  
A. Bolognesi ◽  
S. Artina

The Navile Channel (Bologna, Italy) is an ancient artificial water course derived from the Reno river. It is the main receiving water body for the urban catchment of Bologna sewer systems and also for the Waste Water Treatment Plant (WWTP) main outlet. The aim of this work is to evaluate the Combined Sewer Overflows (CSOs) impact on Navile Channel's water quality. In order to collect Navile flow and water quality data in both dry and wet weather conditions, two measuring and sampling stations were installed, right upstream and downstream the WWTP outflow. The study shows that even in case of low intensity rain events, CSOs have a significant effect on both water quantity and quality, spilling a considerable amount of pollutants into the Navile Channel and presenting also acute toxicity effects. The collected data shown a good correlations between the concentrations of TSS and of chemical compounds analyzed, suggesting that the most part of such substances is attached to suspended solids. Resulting toxicity values are fairly high in both measuring points and seem to confirm synergistic interactions between heavy metals.


1996 ◽  
Vol 33 (2) ◽  
pp. 65-78 ◽  
Author(s):  
Eran Friedler ◽  
David Butler

Results from two surveys in S.E. England are used to illustrate and quantify the inherent uncertainty in the quantity and quality of domestic wastewater at the fundamental level of discharges from domestic appliances. The uncertainties in three principal areas are elucidated. Volumetric discharges are shown to vary significantly for several appliances particularly when used in “running to waste” mode. Pollutant load also varies and information is presented for a number of different appliance-pollutant combinations. The frequency of use is known to vary throughout the day, but figures are presented to quantify the extent of the spread of the data during each hour of the day. A means of integrating the various elements of uncertainty is proposed. Quantification should enable better control of treatment plants and improve forecasting of the influence of combined sewer overflows on receiving waters, hence enhancing the management of the associated risk.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 355-359
Author(s):  
L. Fuchs ◽  
D. Gerighausen ◽  
S. Schneider

For the city of Dresden a general master plan was set up based on investigations of the hydraulic capacity of the sewer system, the loads from combined sewer overflow and the treatment plant. The total emission from combined sewer overflows and treatment plant was the main criteria for the analysis of the efficiency of different renovation alternatives. The effect of the different alternatives on the quality of the receiving waters was investigated with a water quality model and evaluated with different approaches.


Sign in / Sign up

Export Citation Format

Share Document