scholarly journals Ontogeny, morphology and pedicle attachment of stenothecoids from the middle Cambrian of North Greenland (Laurentia)

2021 ◽  
pp. 381-399
Author(s):  
J.S. Peel
Author(s):  
Jon R. Ineson ◽  
John S. Peel

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Ineson, J. R., & Peel, J. S. (1997). Cambrian shelf stratigraphy of North Greenland. Geology of Greenland Survey Bulletin, 173, 1-120. https://doi.org/10.34194/ggub.v173.5024 _______________ The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.


1995 ◽  
Vol 347 (1321) ◽  
pp. 305-358 ◽  

Articulated halkieriids of Halkieria evangelista sp. nov. are described from the Sirius Passet fauna in the Lower Cambrian Buen Formation of Peary Land, North Greenland. Three zones of sclerites are recognizable: obliquely inclined rows of dorsal palmates, quincuncially inserted lateral cultrates and imbricated bundles of ventro-lateral siculates. In addition there is a prominent shell at both ends, each with radial ornamentation. Both sclerites and shells were probably calcareous, but increase in body size led to insertion of additional sclerites but marginal accretion of the shells. The ventral sole was soft and, in life, presumably muscular. Recognizable features of internal anatomy include a gut trace and possible musculature, inferred from imprints on the interior of the anterior shell. Halkieriids are closely related to the Middle Cambrian Wixaxia , best known from the Burgess Shale: this clade appears to have played an important role in early protostome evolution. From an animal fairly closely related to Wixaxia arose the polychaete annelids; the bundles of siculate sclerites prefigure the neurochaetae whereas the dorsal notochaetae derive from the palmates. Wixaxia appears to have a relic shell and a similar structure in the sternaspid polychaetes may be an evolutionary remnant. The primitive state in extant polychaetes is best expressed in groups such as chrysopetalids, aphroditaceans and amphinomids. The homology between polychaete chaetae and the mantle setae of brachiopods is one line of evidence to suggest that the latter phylum arose from a juvenile halkieriid in which the posterior shell was first in juxtaposition to the anterior and rotated beneath it to provide the bivalved condition of an ancestral brachiopod. H. evangelista sp. nov. has shells which resemble those of a brachiopod; in particular the posterior one. From predecessors of the halkieriids known as siphogonuchitids it is possible that both chitons (polyplacophorans) and conchiferan molluscs arose. The hypothesis of halkieriids and their relatives having a key role in annelid—brachiopod—mollusc evolution is in accord with some earlier proposals and recent evidence from molecular biology. It casts doubt, however, on a number of favoured concepts including the primitive annelid being oligochaetoid and a burrower, the brachiopods being deuterostomes and the coelom being an archaic feature of metazoans. Rather, the annelid coelom arose as a functional consequence of the transition from a creeping halkieriid to a polychaete with stepping parapodial locomotion.


1994 ◽  
Vol 169 ◽  
pp. 149-155
Author(s):  
J.S Peel

Nyeboeconus robisoni gen. et sp. nov., is described from the Middle Cambrian Henson Gletscher Formation of western North Greenland. Some authors have interpreted similar shelIs as chondrophorine hydrozoans or invertebrate fossils of uncertain systematic position. The coiled, cap-shaped shell and the presence of an internal plate, or pegma, suggest, however, that this new form is the second genus to be described of the Family Enigmaconidae MacKinnon, 1985 (Mollusca, Class Helcionelloida), otherwise known only from rocks of similar age in New Zealand.


1988 ◽  
Vol 137 ◽  
pp. 118-118
Author(s):  
T.P Fletcher ◽  
A.K Higgins ◽  
J.S Peel

The first record of Middle Cambrian faunas of 'Atlantic' affinity from the Franklinian basin sequence of North Greenland was made by Poulsen (1969) who noted that previously described Greenland faunas were of 'Pacific' type. Field work by the Geological Survey of Greenland during the last decade has established that 'Atlantic' faunas are widespread in more outer shelfsequences along the northern coast of North Greenland while the 'Pacific' faunas occur within inner shelfsequences more to the south, near the margin of the Inland Ice. North Greenland preserves both faunas in dose geographical juxtaposition in only slightly tectonised geological settings. Thus, alatest Middle Cambrian trilobite fauna described by Robison (in press) from the Holm Dal Formation in an area some 40 km south of the presently discussed locality (and more inner shelf) includes a mixture of polymeroids characteristic of the Cedaria Zone of North America and agnostoids characteristic of the Lejopyge laevigata Zone of the Swedish standard zonation.


GFF ◽  
2005 ◽  
Vol 127 (3) ◽  
pp. 187-194 ◽  
Author(s):  
Martin Stockfors ◽  
John S. Peel

1979 ◽  
Vol 91 ◽  
pp. 29-36
Author(s):  
A.R Palmer ◽  
J.S Peel

Early, Middle and Late Cambrian faunas from Peary Land, eastern North Greenland, are briefly documented. The Early Cambrian faunas of the lower Brønlund Fjord Group are assigned to the Bonnia-Olenellus Zone, although olenellids from the underiying Buen Formation may be older. Strata from the upper Brønlund Fjord Group with Middle Cambrian faunas are seemingly separated from the Lower Cambrian by a discontinuity, without representation of early Middle Cambrian zones. Faunas from lower beds of the overlying Tavsens Iskappe Group span the Middle-Late Cambrian boundary. Upper beds ofthe Tavsens Iskappe Group are assigned to the Late Cambrian, but corroborative faunal evidence is not yet available.


1981 ◽  
Vol 141 ◽  
pp. 1-46
Author(s):  
A.R Palmer ◽  
J.S Peel

Twenty-five species of trilobites are described, some in open nomenclature. They represent four faunules of Dresbachian age and one faunule of possibie pre-Dresbachian age from the lower 150 m of the Cass Fjord Formation in Daugaard-Jensen Land, western North Greenland. The Cass Fjord Formation ranges in age from Middle Cambrian-Early Ordovician, although until recently it was widely assumed to be entirely of Ordovician age. All the trilobites are typical North American endemic forms. New taxa include: Bonneterrina greenlandica n. sp., Prolonchocephalus spinosus n. gen. n. sp., Kingstonia peltate n.sp., and Terranovella arcuata n. sp. Biogeographic affinities of the older faunules are with faunas of the inner part of the carbonate belt of the Cordilleran region, while the younger faunules have affinities with faunas from the outer(?) part of the carbonate belt in the northern Appalachian region. Evidence of extension of the Dresbachian-Franconian cratonic unconformity to western North Greenland is presented and the problem of repetition of trilobites in the crisis fauna at the base of the Pterocephaliid biomere is discussed.


GFF ◽  
2005 ◽  
Vol 127 (3) ◽  
pp. 179-185 ◽  
Author(s):  
Martin Stockfors ◽  
John S. Peel

Lethaia ◽  
1969 ◽  
Vol 2 (1) ◽  
pp. 1-14 ◽  
Author(s):  
VALDEMAR POULSEN

1994 ◽  
Vol 169 ◽  
pp. 79-127
Author(s):  
L.E Babcock

New occurrences of Middle Cambrian polymeroid trilobites from the Henson Gletscher and Kap Stanton formations of Nyeboe Land, and the Kap Stanton Formation of Peary Land, North Greenland, are documented here.


Sign in / Sign up

Export Citation Format

Share Document