Direct Forecasting of Freeway Corridor Travel Times Using Spectral Basis Neural Networks

2001 ◽  
Vol 1752 (1) ◽  
pp. 140-147 ◽  
Author(s):  
Laurence R. Rilett ◽  
Dongjoo Park
Geophysics ◽  
2021 ◽  
pp. 1-32
Author(s):  
Rashed Poormirzaee ◽  
Babak Sohrabian ◽  
Pejman Tahmasebi

Seismic refraction is a cost-effective tool to reveal subsurface P-wave velocity. Inversion of travel times for estimating a realistic velocity model is a significant step in the processing of seismic refraction data. The results of the seismic data inversion are stochastic and, thus, using prior information or complementary geophysical data can have a significant role in estimating the structural properties based on observed data. Nevertheless, sufficient prior information or auxiliary data are not available in many geophysical sites. In such situations, developing advanced computational modeling is a vital step in providing primary information and improving the results. To this aim, a new inversion framework through hybrid committee artificial neural networks (CANN) and the flower pollination (FP) optimization algorithm is introduced for inversion of refracted seismic travel times. Synthetic models generated by a forward modeling approach are used to train the machine learning model. Then, model parameters, such as the number of layers, thicknesses, and P-wave velocities, are predicted using a committee machine constructed based on several neural networks, which is achieved by averaging and stack generalization methods where the latter method provides a better result. Then, the CANN results are used in the FP inversion algorithm to estimate the final model as it provides essential prior information on the number of layers and model parameters, which can be used in the FP searching algorithm. The proposed inversion procedure is tested on different synthetic datasets and applied at a dam site to determine the number of layers and their thicknesses. Our findings indicate a successful performance on both synthetic and real data for automatic inversion of seismic refraction data.


2011 ◽  
Vol 5 (4) ◽  
pp. 259-265 ◽  
Author(s):  
C.P.I.J. van Hinsbergen ◽  
J.W.C. van Lint ◽  
H.J. van Zuylen ◽  
A. Hegyi

2021 ◽  
Author(s):  
Stephen Arhin ◽  
Babin Manandhar ◽  
Hamdiat Baba Adam ◽  
Adam Gatiba

Washington, DC is ranked second among cities in terms of highest public transit commuters in the United States, with approximately 9% of the working population using the Washington Metropolitan Area Transit Authority (WMATA) Metrobuses to commute. Deducing accurate travel times of these metrobuses is an important task for transit authorities to provide reliable service to its patrons. This study, using Artificial Neural Networks (ANN), developed prediction models for transit buses to assist decision-makers to improve service quality and patronage. For this study, we used six months of Automatic Vehicle Location (AVL) and Automatic Passenger Counting (APC) data for six Washington Metropolitan Area Transit Authority (WMATA) bus routes operating in Washington, DC. We developed regression models and Artificial Neural Network (ANN) models for predicting travel times of buses for different peak periods (AM, Mid-Day and PM). Our analysis included variables such as number of served bus stops, length of route between bus stops, average number of passengers in the bus, average dwell time of buses, and number of intersections between bus stops. We obtained ANN models for travel times by using approximation technique incorporating two separate algorithms: Quasi-Newton and Levenberg-Marquardt. The training strategy for neural network models involved feed forward and errorback processes that minimized the generated errors. We also evaluated the models with a Comparison of the Normalized Squared Errors (NSE). From the results, we observed that the travel times of buses and the dwell times at bus stops generally increased over time of the day. We gathered travel time equations for buses for the AM, Mid-Day and PM Peaks. The lowest NSE for the AM, Mid-Day and PM Peak periods corresponded to training processes using Quasi-Newton algorithm, which had 3, 2 and 5 perceptron layers, respectively. These prediction models could be adapted by transit agencies to provide the patrons with accurate travel time information at bus stops or online.


Sign in / Sign up

Export Citation Format

Share Document