scholarly journals Existence and uniqueness results for the first-order non-linear impulsive integro-differential equations with two-point boundary conditions

2021 ◽  
Vol 102 (2) ◽  
pp. 74-83
Author(s):  
M.J. Mardanov ◽  
◽  
R.S. Mammadov ◽  
S.Yu. Gasimov ◽  
Ya.A. Sharifov ◽  
...  

The article discusses the existence and uniqueness of solutions for a system of nonlinear integro-differential equations of the first order with two-point boundary conditions. The Green function is constructed, and the problem under consideration is reduced to equivalent integral equation. Existence and uniqueness of a solution to this problem is analyzed using the Banach contraction mapping principle. Schaefer’s fixed point theorem is used to prove the existence of solutions.

Filomat ◽  
2019 ◽  
Vol 33 (5) ◽  
pp. 1387-1395
Author(s):  
Misir Mardanov ◽  
Yagub Sharifov ◽  
Kamala Ismayilova

In this paper the existence and uniqueness of the solutions to boundary value problems for the first order non-linear system of the ordinary differential equations with three-point boundary conditions are investigated. For the first time the Green function is constructed and the considered problem is reduced to the equivalent integral equations that allow us to prove the existence and uniqueness theorems in differ from existing works, applying the Banach contraction mapping principle and Schaefer?s fixed point theorem. An example is given to illustrate the obtained results.


2020 ◽  
Vol 13 (3) ◽  
pp. 414-426
Author(s):  
M.J. Mardanov ◽  
Y.A. Sharifov ◽  
Humbet Aliyev Aliyev ◽  
R.A. Sardarova

This article discusses the existence and uniqueness of solutions for the system of non-linear first order ordinary differential equations with multipoint boundary conditions. The Green function is constructed, and the problem is reduced to the equivalent integral equation. Existence and uniqueness of the solution to this problem is studied using the Banach contraction mapping principle and Schaefer’s fixed point theorem.


Author(s):  
Mohamed Houas ◽  
Khellaf Ould Melha

In this paper, we have studied existence and uniqueness of solutions for a coupled system of multi-point boundary value problems for Hadamard fractional differential equations. By applying principle contraction and Shaefer's fixed point theorem new existence results have been obtained.


2019 ◽  
Vol 12 (3) ◽  
pp. 756-770
Author(s):  
Misir Mardanov ◽  
Yagub Sharifov ◽  
Kamala Ismayilova ◽  
Sevinc Zamanova

In the paper, the existence and uniqueness of the solutions for the system of the nonlinear first-order ordinary differential equations with three-point and integral boundary conditions are studied. The Green function is constructed and the considered problem is reduced to the equivalent integral equation. The existence and uniqueness of the solutions for the given problem are analyzed by using the Banach contraction principle. The Schaefer’s fixed point theorem is thenused to prove the existence of the solutions. Finally, the examples are given to verify the given theorems.


2020 ◽  
Vol 107 (121) ◽  
pp. 145-155
Author(s):  
Devaraj Vivek ◽  
E.M. Elsayed ◽  
Kuppusamy Kanagarajan

We study boundary value problems (BVPs for short) for the integro- differential equations via ?-fractional derivative. The results are obtained by using the contraction mapping principle and Schaefer?s fixed point theorem. In addition, we discuss the Ulam-Hyers stability.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1899
Author(s):  
Ahmed Alsaedi ◽  
Amjad F. Albideewi ◽  
Sotiris K. Ntouyas ◽  
Bashir Ahmad

In this paper, we derive existence and uniqueness results for a nonlinear Caputo–Riemann–Liouville type fractional integro-differential boundary value problem with multi-point sub-strip boundary conditions, via Banach and Krasnosel’skii⏝’s fixed point theorems. Examples are included for the illustration of the obtained results.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Bashir Ahmad ◽  
Sotiris K. Ntouyas

We consider a new class of boundary value problems of nonlinear fractional differential equations with fractional separated boundary conditions. A connection between classical separated and fractional separated boundary conditions is developed. Some new existence and uniqueness results are obtained for this class of problems by using standard fixed point theorems. Some illustrative examples are also discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Karim Guida ◽  
Lahcen Ibnelazyz ◽  
Khalid Hilal ◽  
Said Melliani

In this paper, we investigate the solutions of coupled fractional pantograph differential equations with instantaneous impulses. The work improves some existing results and contributes toward the development of the fractional differential equation theory. We first provide some definitions that will be used throughout the paper; after that, we give the existence and uniqueness results that are based on Banach’s contraction principle and Krasnoselskii’s fixed point theorem. Two examples are given in the last part to support our study.


Sign in / Sign up

Export Citation Format

Share Document