scholarly journals Maximum likelihood characterization of distributions

Bernoulli ◽  
2014 ◽  
Vol 20 (2) ◽  
pp. 775-802 ◽  
Author(s):  
Mitia Duerinckx ◽  
Christophe Ley ◽  
Yvik Swan
Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 3
Author(s):  
X. San Liang

Information flow provides a natural measure for the causal interaction between dynamical events. This study extends our previous rigorous formalism of componentwise information flow to the bulk information flow between two complex subsystems of a large-dimensional parental system. Analytical formulas have been obtained in a closed form. Under a Gaussian assumption, their maximum likelihood estimators have also been obtained. These formulas have been validated using different subsystems with preset relations, and they yield causalities just as expected. On the contrary, the commonly used proxies for the characterization of subsystems, such as averages and principal components, generally do not work correctly. This study can help diagnose the emergence of patterns in complex systems and is expected to have applications in many real world problems in different disciplines such as climate science, fluid dynamics, neuroscience, financial economics, etc.


2018 ◽  
Author(s):  
Jingxian Liu ◽  
Jackson Champer ◽  
Chen Liu ◽  
Joan Chung ◽  
Riona Reeves ◽  
...  

AbstractEstimating fitness differences between allelic variants is a central goal of experimental evolution. Current methods for inferring selection from allele frequency time series typically assume that evolutionary dynamics at the locus of interest can be described by a fixed selection coefficient. However, fitness is an aggregate of several components including mating success, fecundity, and viability, and distinguishing between these components could be critical in many scenarios. Here we develop a flexible maximum likelihood framework that can disentangle different components of fitness and estimate them individually in males and females from genotype frequency data. As a proof-of-principle, we apply our method to experimentally-evolved cage populations of Drosophila melanogaster, in which we tracked the relative frequencies of a loss-of-function and wild-type allele of yellow. This X-linked gene produces a recessive yellow phenotype when disrupted and is involved in male courtship ability. We find that the fitness costs of the yellow phenotype take the form of substantially reduced mating preference of wild-type females for yellow males, together with a modest reduction in the viability of yellow males and females. Our framework should be generally applicable to situations where it is important to quantify fitness components of specific genetic variants, including quantitative characterization of the population dynamics of CRISPR gene drives.


1980 ◽  
Vol 12 (04) ◽  
pp. 903-921 ◽  
Author(s):  
S. Kotz ◽  
D. N. Shanbhag

We develop some approaches to the characterization of distributions of real-valued random variables, useful in practical applications, in terms of conditional expectations and hazard measures. We prove several representation theorems generalizing earlier results, and establish stability theorems for two general characteristics introduced in this paper.


Sign in / Sign up

Export Citation Format

Share Document