linked gene
Recently Published Documents


TOTAL DOCUMENTS

505
(FIVE YEARS 78)

H-INDEX

52
(FIVE YEARS 7)

2022 ◽  
Vol 23 (2) ◽  
pp. 611
Author(s):  
Chiara Siniscalchi ◽  
Armando Di Palo ◽  
Aniello Russo ◽  
Nicoletta Potenza

Non-coding RNAs (ncRNAs) constitute the majority of the transcriptome, as the result of pervasive transcription of the mammalian genome. Different RNA species, such as lncRNAs, miRNAs, circRNA, mRNAs, engage in regulatory networks based on their reciprocal interactions, often in a competitive manner, in a way denominated “competing endogenous RNA (ceRNA) networks” (“ceRNET”): miRNAs and other ncRNAs modulate each other, since miRNAs can regulate the expression of lncRNAs, which in turn regulate miRNAs, titrating their availability and thus competing with the binding to other RNA targets. The unbalancing of any network component can derail the entire regulatory circuit acting as a driving force for human diseases, thus assigning “new” functions to “old” molecules. This is the case of XIST, the lncRNA characterized in the early 1990s and well known as the essential molecule for X chromosome inactivation in mammalian females, thus preventing an imbalance of X-linked gene expression between females and males. Currently, literature concerning XIST biology is becoming dominated by miRNA associations and they are also gaining prominence for other lncRNAs produced by the X-inactivation center. This review discusses the available literature to explore possible novel functions related to ceRNA activity of lncRNAs produced by the X-inactivation center, beyond their role in dosage compensation, with prospective implications for emerging gender-biased functions and pathological mechanisms.


2021 ◽  
Author(s):  
Jo Sourbron ◽  
Katrien Jansen ◽  
Davide Mei ◽  
Trine Bjørg Hammer ◽  
Rikke S. Møller ◽  
...  

AbstractWe report an in-depth genetic analysis in an 11-year-old boy with drug-resistant, generalized seizures and developmental disability. Three distinct variants of unknown clinical significance (VUS) were detected by whole exome sequencing (WES) but not by initial genetic analyses (microarray and epilepsy gene panel). These variants involve the SLC7A3, CACNA1H, and IGLON5 genes, which were subsequently evaluated by computational analyses using the InterVar tool and MutationTaster. While future functional studies are necessary to prove the pathogenicity of a certain VUS, segregation analyses over three generations and in silico predictions suggest the X-linked gene SLC7A3 (transmembrane solute carrier transporter) as the likely culprit gene in this patient. In addition, a search via GeneMatcher unveiled two additional patients with a VUS in SLC7A3. We propose SLC7A3 as a likely candidate gene for epilepsy and/or developmental/cognitive delay and provide an overview of the 27 SLC genes related to epilepsy by other preclinical and/or clinical studies.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3416
Author(s):  
Reem Makki ◽  
Victoria H. Meller

Organisms with highly differentiated sex chromosomes face an imbalance in X-linked gene dosage. Male Drosophila solve this problem by increasing expression from virtually every gene on their single X chromosome, a process known as dosage compensation. This involves a ribonucleoprotein complex that is recruited to active, X-linked genes to remodel chromatin and increase expression. Interestingly, the male X chromosome is also enriched for several proteins associated with heterochromatin. Furthermore, the polytenized male X is selectively disrupted by the loss of factors involved in repression, silencing, heterochromatin formation or chromatin remodeling. Mutations in many of these factors preferentially reduce male survival or enhance the lethality of mutations that prevent normal recognition of the X chromosome. The involvement of primarily repressive factors in a process that elevates expression has long been puzzling. Interestingly, recent work suggests that the siRNA pathway, often associated with heterochromatin formation and repression, also helps the dosage compensation machinery identify the X chromosome. In light of this finding, we revisit the evidence that links nuclear organization and heterochromatin to regulation of the male X chromosome.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kari Neier ◽  
Tianna E. Grant ◽  
Rebecca L. Palmer ◽  
Demario Chappell ◽  
Sophia M. Hakam ◽  
...  

AbstractRett syndrome (RTT) is a regressive neurodevelopmental disorder in girls, characterized by multisystem complications including gut dysbiosis and altered metabolism. While RTT is known to be caused by mutations in the X-linked gene MECP2, the intermediate molecular pathways of progressive disease phenotypes are unknown. Mecp2 deficient rodents used to model RTT pathophysiology in most prior studies have been male. Thus, we utilized a patient-relevant mouse model of RTT to longitudinally profile the gut microbiome and metabolome across disease progression in both sexes. Fecal metabolites were altered in Mecp2e1 mutant females before onset of neuromotor phenotypes and correlated with lipid deficiencies in brain, results not observed in males. Females also displayed altered gut microbial communities and an inflammatory profile that were more consistent with RTT patients than males. These findings identify new molecular pathways of RTT disease progression and demonstrate the relevance of further study in female Mecp2 animal models.


2021 ◽  
Author(s):  
Guillaume Martinez ◽  
Charles Coutton ◽  
Corinne Loeuillet ◽  
Caroline Cazin ◽  
Jana Muroňová ◽  
...  

Male infertility is an important health concern that is expected to have a major genetic etiology. Although high-throughput sequencing has linked gene defects to more than 50% of rare and severe sperm anomalies, less than 20% of common and moderate forms are explained. We hypothesized that this low success rate could at least be partly due to oligogenic defects – the accumulation of several rare heterozygous variants in distinct, but functionally connected, genes. Here, we compared fertility and sperm parameters in male mice harboring one to four heterozygous truncating mutations of genes linked to multiple morphological anomalies of the flagellum (MMAF) syndrome. Results indicated progressively deteriorating sperm morphology and motility with increasing numbers of heterozygous mutations. This first evidence of oligogenic inheritance in failed spermatogenesis strongly suggests that oligogenic heterozygosity could explain a significant proportion of asthenoteratozoospermia cases. The findings presented pave the way to further studies in mice and man.


Author(s):  
Jason R. Pitarresi ◽  
Robert J. Norgard ◽  
Anna M. Chiarella ◽  
Kensuke Suzuki ◽  
Richard Kremer ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Jiang ◽  
Xing Fu ◽  
Yuhan Zhang ◽  
Shen-Fei Wang ◽  
Hong Zhu ◽  
...  

AbstractRett syndrome (RTT) is a severe neurological disorder and a leading cause of intellectual disability in young females. RTT is mainly caused by mutations found in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2). Despite extensive studies, the molecular mechanism underlying RTT pathogenesis is still poorly understood. Here, we report MeCP2 as a key subunit of a higher-order multiunit protein complex Rbfox/LASR. Defective MeCP2 in RTT mouse models disrupts the assembly of the MeCP2/Rbfox/LASR complex, leading to reduced binding of Rbfox proteins to target pre-mRNAs and aberrant splicing of Nrxns and Nlgn1 critical for synaptic plasticity. We further show that MeCP2 disease mutants display defective condensate properties and fail to promote phase-separated condensates with Rbfox proteins in vitro and in cultured cells. These data link an impaired function of MeCP2 with disease mutation in splicing control to its defective properties in mediating the higher-order assembly of the MeCP2/Rbfox/LASR complex.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Khristina G. Judan Cruz ◽  
Ervee P. Landingin ◽  
Maureen B. Gajeton ◽  
Somar Israel D. Fernando ◽  
Kozo Watanabe

Abstract Background Production, marketability and consumer preference of red tilapia often depends upon the intensity of coloration. Hence, new approaches to develop coloration are now geared to improve market acceptability and profit. This study evaluated the effects of carotenoid-rich diets on the phenotypic coloration, carotenoid level, weight gain and expression of coloration-linked genes in skin, fin and muscle tissues. Carotenoids were extracted from dried Daucus carota peel, Ipomoea aquatica leaves, and Moringa oleifera leaves. Eighty (80) size-14 fish were fed with carotenoid-rich treatments twice a day for 120 days. The phenotypic effect of the carotenoid extracts was measured through a color chart. Skin carotenoid level was measured through UV-vis spectrophotometer. csf1ra, Bcdo2 and StAR expression analysis was done using qRT-PCR. Results Treatments with carotenoid extracts yielded higher overall scores on phenotypic coloration and tissue carotenoid levels. Differential expression of carotenoid-linked genes such as the elevated expression in csf1ra and lower expression in Bcdo2b following supplementation of the enhanced diet supports the phenotypic redness and increased carotenoid values in red tilapia fed with D. carota peel and I. aquatica leaves. Conclusions Overall improvement in the redness of the tilapia was achieved through the supplementation of carotenoid-rich diet derived from readily available plants. Differential expression of coloration-linked genes supports the increase in the intensity of phenotypic coloration and level of carotenoids in the tissues. The study emphasizes the importance of carotenoids in the commercial tilapia industry and highlights the potential of the plant extracts for integration and development of feeds for color enhancement in red tilapia.


Sign in / Sign up

Export Citation Format

Share Document