scholarly journals Solution of Pantograph Equation by Collocation method using Orthogonal Exponential Polynomials(OEP)

2019 ◽  
Vol 1 (2) ◽  
pp. 126-127
Author(s):  
Muhammad Bilal ◽  
Norhayati Binit Rosli ◽  
Iftikar Ahmad ◽  
Mirza Rizwan Sajid

Novel matrix based numerical technique known as collocation method is implemented for the solution of pantograph differential equations (PDE) via truncated orthoexponential polynomial(OEP). To check applicability, reliability and efficiency of the methodology, here examine three examples of delay differential equations. At last the comparison made between proposed and reported methodologies and present method was perfect in agreement.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
M. Mustafa Bahşi ◽  
Mehmet Çevik

The pantograph equation is a special type of functional differential equations with proportional delay. The present study introduces a compound technique incorporating the perturbation method with an iteration algorithm to solve numerically the delay differential equations of pantograph type. We put forward two types of algorithms, depending upon the order of derivatives in the Taylor series expansion. The crucial convenience of this method when compared with other perturbation methods is that this method does not require a small perturbation parameter. Furthermore, a relatively fast convergence of the iterations to the exact solutions and more accurate results can be achieved. Several illustrative examples are given to demonstrate the efficiency and reliability of the technique, even for nonlinear cases.


2020 ◽  
Vol 85 (4) ◽  
pp. 1123-1153
Author(s):  
Lei Shi ◽  
Zhong Chen ◽  
Xiaohua Ding ◽  
Qiang Ma

AbstractIn this paper, a stable collocation method for solving the nonlinear fractional delay differential equations is proposed by constructing a new set of multiscale orthonormal bases of $W^{1}_{2,0}$ W 2 , 0 1 . Error estimations of approximate solutions are given and the highest convergence order can reach four in the sense of the norm of $W_{2,0}^{1}$ W 2 , 0 1 . To overcome the nonlinear condition, we make use of Newton’s method to transform the nonlinear equation into a sequence of linear equations. For the linear equations, a rigorous theory is given for obtaining their ε-approximate solutions by solving a system of equations or searching the minimum value. Stability analysis is also obtained. Some examples are discussed to illustrate the efficiency of the proposed method.


2018 ◽  
Vol 23 (1) ◽  
pp. 64-78 ◽  
Author(s):  
A.S.V. Ravi Kanth ◽  
P. Murali Mohan Kumar

This paper presents a numerical technique for solving nonlinear singu- larly perturbed delay differential equations. Quasilinearization technique is applied to convert the nonlinear singularly perturbed delay differential equation into a se- quence of linear singularly perturbed delay differential equations. An exponentially fitted spline method is presented for solving sequence of linear singularly perturbed delay differential equations. Error estimates of the method is discussed. Numerical examples are solved to show the applicability and efficiency of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document