scholarly journals A Numerical Technique for Solving Nonlinear Singularly Perturbed Delay Differential Equations

2018 ◽  
Vol 23 (1) ◽  
pp. 64-78 ◽  
Author(s):  
A.S.V. Ravi Kanth ◽  
P. Murali Mohan Kumar

This paper presents a numerical technique for solving nonlinear singu- larly perturbed delay differential equations. Quasilinearization technique is applied to convert the nonlinear singularly perturbed delay differential equation into a se- quence of linear singularly perturbed delay differential equations. An exponentially fitted spline method is presented for solving sequence of linear singularly perturbed delay differential equations. Error estimates of the method is discussed. Numerical examples are solved to show the applicability and efficiency of the proposed scheme.

Author(s):  
M. Adilaxmi , Et. al.

This paper envisages the use of Liouville Green Transformation to find the solution of singularly perturbed delay differential equations. First, using Taylor series, the given singularly perturbed delay differential equation is approximated by an asymptotically equivalent singularly perturbation problem. Then the Liouville Green Transformation is applied to get the solution. The method is demonstrated by implementing several model examples by taking various values for the delay parameter and perturbation parameter.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Umer Saeed ◽  
Mujeeb ur Rehman

We proposed a method by utilizing method of steps and Hermite wavelet method, for solving the fractional delay differential equations. This technique first converts the fractional delay differential equation to a fractional nondelay differential equation and then applies the Hermite wavelet method on the obtained fractional nondelay differential equation to find the solution. Several numerical examples are solved to show the applicability of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
S. Narayanamoorthy ◽  
T. L. Yookesh

We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.


1996 ◽  
Vol 48 (4) ◽  
pp. 871-886 ◽  
Author(s):  
Horng-Jaan Li ◽  
Wei-Ling Liu

AbstractSome oscillation criteria are given for the second order neutral delay differential equationwhere τ and σ are nonnegative constants, . These results generalize and improve some known results about both neutral and delay differential equations.


Sign in / Sign up

Export Citation Format

Share Document