scholarly journals Radical Mechanism of Ir III /Ni II -Metallaphotoredox Catalyzed C(sp 3 )-H Functionalization Triggered by Proton-Coupled Electron Transfer: Theoretical Insight

CCS Chemistry ◽  
2021 ◽  
pp. 1-33
Author(s):  
Yu-Jiao Dong ◽  
Bo Zhu ◽  
Yun Geng ◽  
Zhi-Wen Zhao ◽  
Zhong-Min Su ◽  
...  
2017 ◽  
Vol 61 (2) ◽  
pp. 281-292 ◽  
Author(s):  
Steven Y. Reece ◽  
Mohammad R. Seyedsayamdost

Escherichia coli class Ia ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to 2′-deoxynucleotides using a radical mechanism. Each turnover requires radical transfer from an assembled diferric tyrosyl radical (Y•) cofactor to the enzyme active site over 35 Å away. This unprecedented reaction occurs via an amino acid radical hopping pathway spanning two protein subunits. To study the mechanism of radical transport in RNR, a suite of biochemical approaches have been developed, such as site-directed incorporation of unnatural amino acids with altered electronic properties and photochemical generation of radical intermediates. The resulting variant RNRs have been investigated using a variety of time-resolved physical techniques, including transient absorption and stopped-flow UV-Vis spectroscopy, as well as rapid freeze-quench EPR, ENDOR, and PELDOR spectroscopic methods. The data suggest that radical transport occurs via proton-coupled electron transfer (PCET) and that the protein structure has evolved to manage the proton and electron transfer co-ordinates in order to prevent ‘off-pathway’ reactivity and build-up of oxidised intermediates. Thus, precise design and control over the factors that govern PCET is key to enabling reversible and long-range charge transport by amino acid radicals in RNR.


2021 ◽  
Vol 143 (8) ◽  
pp. 3104-3112
Author(s):  
Yusuke Yoneda ◽  
S. Jimena Mora ◽  
James Shee ◽  
Brian L. Wadsworth ◽  
Eric A. Arsenault ◽  
...  

2021 ◽  
Author(s):  
Anthony Wong ◽  
Arunavo Chakraborty ◽  
Deependra Bawari ◽  
Guang Wu ◽  
Roman Dobrovetsky ◽  
...  

Coordination induced bond weakening (CIBW) leads to facile PCET at various E–H bonds.


Sign in / Sign up

Export Citation Format

Share Document