Intraoperative real-time contrast-enhanced ultrasound angiography: a new adjunct in the surgical treatment of arteriovenous malformations

2007 ◽  
Vol 107 (5) ◽  
pp. 959-964 ◽  
Author(s):  
Yi Wang ◽  
Yong Wang ◽  
Yida Wang ◽  
Nobuyuki Taniguchi ◽  
Xian-Cheng Chen

Object The goal of this study was to combine the use of ultrasound contrast agents with intraoperative ultrasound techniques to identify intraoperatively a patient's vascular anatomy, including feeding arteries and draining veins of an intracranial arteriovenous malformation (AVM). Methods The authors examined 12 consecutive patients with AVMs that had been diagnosed on the basis of preoperative findings on magnetic resonance images and digital subtraction angiograms obtained between September 2003 and December 2005. After each patient had undergone a routine craniotomy, a bolus of contrast agent was injected intravenously, and a real-time microbubble perfusion process was observed to identify the feeding arteries and draining veins of the AVM in a single cross-section. The so-called burst–refill technique was used to sweep the lesion in multiple sections and orientations to obtain information on the surrounding vascular anatomy, after which the findings were compared with those obtained during preoperative imaging. Results Intraoperative ultrasonography provided high-quality images in every case. Although plain imaging failed to show an identifiable AVM boundary, color Doppler flow imaging clearly delineated the shape and margin of the AVM. Nevertheless, neither mode of imaging enabled the surgeons to categorically distinguish between feeding and draining vessels. The real-time perfusion process of microbubbles was first visualized 20 to 30 seconds after the SonoVue bolus injection, and the burst–refill technique made possible identification of the vascular anatomy of malformation lesions in multiple planes. Conclusions Using both an ultrasound contrast agent and the burst–refill technique provided a rapid, convenient, and precise way of locating AVM feeding arteries intraoperatively. The combined technique seems warranted in the intraoperative treatment of AVMs.

Neurosurgery ◽  
2014 ◽  
Vol 74 (5) ◽  
pp. 542-552 ◽  
Author(s):  
Francesco Prada ◽  
Alessandro Perin ◽  
Alberto Martegani ◽  
Luca Aiani ◽  
Luigi Solbiati ◽  
...  

Abstract BACKGROUND: Contrast-enhanced ultrasound (CEUS) is a dynamic and continuous modality that offers a real-time, direct view of vascularization patterns and tissue resistance for many organs. Thanks to newer ultrasound contrast agents, CEUS has become a well-established, live-imaging technique in many contexts, but it has never been used extensively for brain imaging. The use of intraoperative CEUS (iCEUS) imaging in neurosurgery is limited. OBJECTIVE: To provide the first dynamic and continuous iCEUS evaluation of a variety of brain lesions. METHODS: We evaluated 71 patients undergoing iCEUS imaging in an off-label setting while being operated on for different brain lesions; iCEUS imaging was obtained before resecting each lesion, after intravenous injection of ultrasound contrast agent. A semiquantitative, offline interobserver analysis was performed to visualize each brain lesion and to characterize its perfusion features, correlated with histopathology. RESULTS: In all cases, the brain lesion was visualized intraoperatively with iCEUS. The afferent and efferent blood vessels were identified, allowing evaluation of the time and features of the arterial and venous phases and facilitating the surgical strategy. iCEUS also proved to be useful in highlighting the lesion compared with standard B-mode imaging and showing its perfusion patterns. No adverse effects were observed. CONCLUSION: Our study is the first large-scale implementation of iCEUS in neurosurgery as a dynamic and continuous real-time imaging tool for brain surgery and provides the first iCEUS characterization of different brain neoplasms. The ability of CEUS to highlight and characterize brain tumor will possibly provide the neurosurgeon with important information anytime during a surgical procedure.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (18) ◽  
pp. 3716-3722 ◽  
Author(s):  
Maarten P. Kok ◽  
Tim Segers ◽  
Michel Versluis

We present a lab-on-a-chip methodology for the enrichment of ultrasound contrast agents using pinched flow fractionation. We extend the modelling to include relatively large particles, by combining numerical and experimental results. Due to the simple operating principle, sorting devices based on this method are ideally suited for paralellization.


2015 ◽  
Author(s):  
D. Peruzzini ◽  
J. Viti ◽  
P. Tortoli ◽  
M. D. Verweij ◽  
N. de Jong ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaoyu Li ◽  
Shujun Xia ◽  
Ri Ji ◽  
Weiwei Zhan ◽  
Wei Zhou

ObjectivesA novel ultrasound contrast agent (UCA) VEGFR2-targeting iron-doped silica (SiO2) hollow nanoparticles (VEGFR2-PEG-HSNs-Fe NPs) was prepared and applied in microwave ablation for breast cancer to investigate its value in the evaluation of effectiveness after tumor ablation.MethodsVEGFR2-PEG-HSNs-Fe NPs were prepared by using nano-SiO2, which was regarded as a substrate and etched by ferrous acetate, and then modified with anti-VEGFR2 antibody. Laser confocal microscope and flow cytometry were used to observe its main physicochemical properties, and biological safety was also investigated. After the xenograft tumor was treated with microwave ablation, the extent of perfusion defect was evaluated by ultrasound by injecting VEGFR2-PEG-HSNs-Fe NPs.ResultsThe average particle size of VEGFR2-PEG-HSNs-Fe was 276.64 ± 30.31 nm, and the surface potential was −13.46 ± 2.83 mV. In vitro, the intensity of ultrasound signal increased with UCA concentration. Good biosafety was performed in in vivo and in vitro experiments. The enhanced ultrasound signal was detected in tumors after injection of VEGFR2-PEG-HSNs-Fe NPs, covering the whole tumor. The lesions, which were incompletely ablated, presented as contrast agent perfusion at the periphery of the tumor, and contrast enhanced ultrasound (CEUS) was performed again after complementary ablation. It was confirmed that all the lesions were completely ablated.ConclusionNano-targeted UCAs VEGFR2-PEG-HSNs-Fe NPs had good biosafety and ability of specific imaging, which might be used as a contrast agent in CEUS to evaluate the efficacy of tumor ablation.


2007 ◽  
Vol 99 (2) ◽  
pp. 275-278 ◽  
Author(s):  
Attila Nemes ◽  
Marcel L. Geleijnse ◽  
Boudewijn J. Krenning ◽  
Osama I.I. Soliman ◽  
Ashraf M. Anwar ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A2-A2
Author(s):  
G FELICIANGELI ◽  
G ARGALIA ◽  
L BOLOGNINI ◽  
T ABBATTISTA ◽  
M URBANI ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Wang ◽  
Al Christopher De Leon ◽  
Reshani Perera ◽  
Eric Abenojar ◽  
Ramamurthy Gopalakrishnan ◽  
...  

AbstractUltrasound imaging is routinely used to guide prostate biopsies, yet delineation of tumors within the prostate gland is extremely challenging, even with microbubble (MB) contrast. A more effective ultrasound protocol is needed that can effectively localize malignancies for targeted biopsy or aid in patient selection and treatment planning for organ-sparing focal therapy. This study focused on evaluating the application of a novel nanobubble ultrasound contrast agent targeted to the prostate specific membrane antigen (PSMA-targeted NBs) in ultrasound imaging of prostate cancer (PCa) in vivo using a clinically relevant orthotopic tumor model in nude mice. Our results demonstrated that PSMA-targeted NBs had increased extravasation and retention in PSMA-expressing orthotopic mouse tumors. These processes are reflected in significantly different time intensity curve (TIC) and several kinetic parameters for targeted versus non-targeted NBs or LUMASON MBs. These, may in turn, lead to improved image-based detection and diagnosis of PCa in the future.


Sign in / Sign up

Export Citation Format

Share Document